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Chapter 1 

Introduction to Di erential 

Equations 
 

 
 
 
 
The following topics are to be covered from differential equation of first order and first degree. Topics 

included here are from unit-3 of the syllabus according to choice base credit system effective from 

June-2010. The course code of the M-101 and title of the paper is Geometry and calculus. 

Differential Equations of First Order and First Degree: Definition and method of solving of homoge- 

neous differential equations, Definition and method of solving of Linear differential equations of first 

order and first degree, Definition and method of solving of Bernoulli’s differential equation and Def- 

inition and methods of solving of Exact differential equation. Differential Equations of First order 

and Higher Degree: Differential equations of first order and first degree solvable for x, solvable for y, 

solvable for p. Clairaut’s form of differential equation and Lagrange’s form of differential equations. 

Definition 1.1. Differential equation is an equation which involves differentials or differential coeffi- 

cients. For example, 

1. d y = x2 + 2y. 

2. r 2 d
2 θ = a. Where a is constant. 

3. L d
2 q 

+ R dq + 1 q = E sin ωt. 

Definition 1.2. A differential equation is said to be linear in dependent variable if, 

1. dependent variable and all its derivatives present are in first degree. 

2. dependent variable and its derivatives are not multiplies together. 

3. dependent variable and its derivatives are not multiplied with itself. 
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√ √ 

µ ¶ 

∂t ∂x2 ∂y 2 

∂t ∂x2 

 

 

 

 
4. no transcedental functions of dependent variable and/or its derivative occur. 

 

Remark 1.3. A differential equation which is not linear is said to be Non-linear. It is nice exercise to 

find out some examples of linear and non linear differential equation.  You can check from examples 

given in the exercises. (do it!) 

 

Definition 1.4. An ordinary differential equation (O. D. E.) is a differential equation which involves 

only ordinary derivatives. 

 

Definition 1.5. A partial differential equation (P. D. E) is a differential equation which involves only 

partial derivatives. For example, 

1. ∂U = c 
³ 
∂2U + ∂

2U 
´
. 

 

2. ∂U = c2 ∂2U . 

 

Definition 1.6. The order of the differential equation is defined to as the order of the highest derivative 

involved in the differential equation. Also, the degree of the differential equation is defined as the 

degree of the highest derivative involved in the differential equation, where all derivatives occurring 

therein are free from radicals and fraction. 

 

Examples 1.7. (1) Decide the order and degree of the differential equation given by 

2 d 2 y dy 
,

 

x 
dx2 

+ x 
dx 

+ 3dx = sin x. 

Solution: The given differential equation is not free from integration sign. So, to decide order of a 

differential equation we have to differentiate with respect to x on both sides and make it free from 

integration. 

2 d 3 y d 2 y dy 
=⇒ x 

dx3  
+ 3x 

dx2  
+ 

dx 
+ 3 = cos x. 

Here, order of the highest derivative involved is three. Therefore, order of differential equation is 3, and 

degree of highest derivative is 1. Thus, order is 3 and degree is 1. 

(2) 4 (y ′′)5 = 7 + 3(y ′)2 

Solution: To obtain degree of differential equation we have make differential equation free from radi- 
cals. 

∴ (
q

4  
(y ′′)5)4 = (

q

7 + 3(y ′)2)4. 

(y ′′)5 = (7 + 3(y ′)2)2. 
 

d 2 y 5 
 

 

dx2 
= 

·

7 + 3 

µ 
dy 

¶¸2 
 

Which shows that order of the given differential equation is 2 and degree is 5. 

dx 
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dx 

dx2 

dx 

= + 

dx dx 

dx dx 

 

 

 

 

Definition 1.8.  1. A solution or integral or primitive of a differential equation is a relation 

between the variables which does not involve any derivatives and also satisfies given differen- 

tial equation. For example, y = c1 cos x + c2 sin x, where c1 and c2 are arbitrary constants, is a 

solution of the differential equation given by d
2 y 

+ y = 0. 

2. A solution of a differential equation in which the number of arbitrary constants is equal to the or- 

der of the differential equation is called the general solution or complete integral or complete 

primitive. 

3. The solution obtained from the general solution by giving particular values to the arbitrary con- 

stants is called particular solution. For example, y = x4 + 2 is a particular solution of the differ- 

ential equation d y = 4x3, where c = 2. 

4. A solution which can not be obtained from a general solution is called singular solution . For 

example, y = x d y − 2 

³ 
dy 

´2
. The general solution is given by y = cx + 2c2, where c is an arbitrary 

constant. Also, 8y = x2 is a singular solution which can not be obtained by putting any value of 
c. 

Examples 1.9. (1) Find the differential equation from y = ax − a2, where a is an arbitrary constant. 

Solution: Differentiating y = ax − a2 with respect to x we get d y = a. Substituting we get desired differ- 

ential equation y = 
³ 

dy 
´
x − 

³ 
dy 

´2
. 

(2)Form the differential equation from y = Ae2x + Be5x; where A and B are arbitrary constants. 
Solution: Here, two arbitrary constants A and B are present, therefore to eliminate them we have to 

differentiate two times. 

∴ 
dy 

2Ae2x 5Be5x . (1.1) 
dx 

again by differentiating with respect to x we get, 
 

d 2 y 2x 

∴ 
dx2  

= 4Ae 

 

+ 25Be5x 

 

. (1.2) 

Multiply equation y = Ae2x + Be5x by −2 and adding in (4.2) we get 

dy 
− 2y = 3Be5x =⇒ Be5x = 

1 
·
dy 

− 
2 

y 

¸

. (1.3) 

dx 3  dx 3 

Now multiply (4.1) by −5 and adding in (4.2) we get, Ae2x = 5 dy 
− 1 d 2 y 

. Thus by substituting values of 

constants we get  
d 2 y dy 

6 dx 6 dx2 

 

Which is required differential equation. 

dx2  
− 7 

dx 
+ 10y = 0. 

 

Exercise-I 

 
Que-1. Find the differential equation from the following equations. 



 

− = 

dx2 dx 

y dx y ′ 

dx dx 

dx2 dx 

 

 

 

1. xy = cex + be−x + x2, where b and c are arbitrary constants. 

 

 

2. ax2 + by 2 = 1, where a and b are arbitrary constants. 
 

 

3. y = ax + bx2, where a and b are arbitrary constants. 

 

 

4. r 2 = a2cos2θ, where a is an arbitrary constant. 

 

 

Que-2. Find out order and degree of the following differential equations. 

 

 

1. x2 d
2 y 

− x( d y )3 + y = cosx. 

 

2. y
′ 

=  d  [ y
′′ 

]. 

 

3. ( d y )2 = 

q

1 + ( d y )2. 

 

4. d
2 y 

= 3 d y + 
, 
xdx. 

 

 

Que-3. Show that y = e2x is a solution of a differential equation 

 

2 d 2 y 
3x 

dx2  
+ 2(1 − 3x 

2
) 

dy 
4y 0. 

dx 

 

Que-4. Prove that y = 2x + 5e−x is a particular solution of a differential equation 

 
d 2 y dy 

(x + 1) 
dx2  

+ x 
dx 

− y = 0. 

 

Que-5. Which curve is represented by a differential equation 

 

 
d 2 y 

2a 
dx2  

= 1? 
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dx 

 

 

 

 

 
 

 

 

 

 
 

Chapter 2 

Di erential Equations of First Order 

and First Degree. 
 

 
 
 

 
In order to solve the differential equation, we need to investigate, whether the solution exists. It is not 

always possible to find a real analytic solution of a given differential equation. For example, 

³ 
dy 

´2 
= 

−5 has no solution for any real value of y . In our case we shall discuss some of the special types 

of differential equations for which analytic solution exists. Only those differential equations which 

belong to or can be reduced to any one of the following type can be solved by standard procedure. 

These types are, 

 

1. Differential equation in which variables are separable. 

 

2. Homogeneous differential equations. 

 
3. Nonhomogeneous differential equations which can be reduced to homogeneous differential 

equations. 

 

4. Linear differential equations. 

 

5. Bernoulli’s differential equations. These are nonlinear types of differential equations which 

can be reduced to linear form. 

 

6. Exact differential equations. 
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, , 

dx 

= + 

2y 3x 2 

3x 2 2y 

 

 

2.1 Di erential equations in which variables are sep- 

arable. 

The general form of this type of equation is 

 

M (x)dx + N (y )dy = 0, (2.1) 

which can be solved by direct integration as  M (x)dx+  N (y )dy = c, where c is an arbitrary constant. 

If the differential equation is given in the form 

 

f1(x)g1(y )dx + f2(x)g2(y )dy = 0, (2.2) 

then we can reduce it in the form of equation (2.1) by rewriting as 

 f1(x) 
dx + 

g2(y) 
dy = 0,

 

f2(x) g1(y ) 

provided f2(x) /= 0, g1(y ) /= 0. Also, if the given differential equation is in the form 

dy 

dx 
= f (ax + by + c), (2.3) 

then put ax + by + c = u, to convert it in general form. Let us see following examples to understand 
this method well. 

Examples 2.1. 1.  d y = e3x−2y + x2e−2y . 

Solution: The given differential equation is not in its general form. In order to solve the given 

differential equation first we will convert it into general form. 

 

 
dy 

e−2y (e3x x2) 
dx 

=⇒ e  dy = (e + x )dx 

=⇒ (e + x )dx − e  dy = 0, 

which is in the general form and hence the solution can be obtained by direct integration. 

=⇒ 

,

(e3x + x2)dx − 

, 

e2y dy = c 
 

e3x 

=⇒ 
3 

+ 
x3 e2y 

3 
− 

2 
= c 

or 3e2y = 2(e3x + x3) + c′. 

Which is a general solution of the given differential equation and c′ is an arbitrary constant. 
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dx 

dy dt 

, 

= 

, 

+

 

4 

4 

x 

dx 

dx 

dx x dx Q(x, y ) 

 

 

 

2. Obtain particular solution of d y = (4x + y + 1)2, where y (0) = 1 

Solution: The given differential equation is not of the form of separable variable. Hence, to con- 
vert it into separable variable form we put 4x + y + 1 = t and dt = 4 + d y =⇒ = − 4. Put 

these values in equation we get 
dt 2 

dx 
− 4 = t 

dt 

dx dx dx dx 

∴ 
t 2 + 4 

= dx. 

 dt  
dx c, where c is an arbitrary constant. 

t 2 + 4 

∴ 
1 

tan−1 
t 

= x + c 

2 2 

∴ 
1 

tan−1 
4x + y + 1 

= x + c 

2 2 

Put x = 0 and y = 1 we get tan(2c) = 1 =⇒ 2c = π . Thus, particular solution is given by 

4x + y + 1 = 2 tan

³
2x + 

π ́
. 

 

2.2 Homogeneous di erential equations 

Definition 2.2. Let E ⊂ R2. A function f : E → R is said to be homogeneous of degree n if it can be 

written in the form f (x, y ) = xnφ( y ). 

Definition 2.3. A differential equation is said to be homogeneous differential equation if it is of the 

form 

dy 
= f 

³ y ´ 
or 

dy 
= 

P (x, y) 
. (2.4)

 

Where P (x, y ) and Q(x, y ) are homogeneous functions of equal degree in variables x and y. 

 

In order to solve homogeneous differential equations we need to follow mainly three following steps. 

1. Put y = vx in the given differential equation and evaluate d y . 

 

2. Substitute the values of y and d y in main equation and bring the equation in the form of sepa- 

rable variable. 

 

3. Solve by the method of separable variable. 

Examples 2.4. 1.  Solve: (x2 + y 2)dx − 2xydy = 0 
Solution: 2 2 (1 

y 

dy 
= 

x + y  
= 

+ x ) (2.5) 
 

dx 2xy 2y 

x 



8 CHAPTER 2. DIFFERENTIAL EQUATIONS OF FIRST ORDER AND FIRST DEGREE. 
 

l m 

 

 

 
Put y = vx we get d y = v + x dv . Substitute these values in equation (2.5) we get, 

dx dx 
 

v + x 
dv 

= 
1 + v 

dx 2v 

dv 
∴ x 

dx 
= 

dv 

1 + v2 − 2v2 
 

2v 

1 − v2 
∴ x 

dx 
= 

2v 

2v 1 

∴ 
1 − v2 

dv = 
x 

dx 

Which is now in the separable variable form. So, solution can be obtain by direct integration. 

Integrating both side we get, 

∴ 

, 
 2v  

dv = 

, 
1 

dx 

1 − v2 x 

∴ −log(1 − v2) = log x + log c where c is an arbitrary constant. 

∴ log x + log(1 − v2) = log c′, where c′ = c−1 

∴ log(x(1 − v2)) = log c′ 

by taking exponential on both sides we get, 

x(1 − v2) = c′, 

now substitute the value of v in above equation, we get 

x2 − y 2 = c′x 

which is the general solution of the given differential equation. 

 

2.3 Nonhomogeneous di erential equations which can 

be reduced to homogeneous di erential equations. 

A differential equation of the form,  

dy 
= 

 ax + by + c  

 

 
(2.6) 

dx lx + my + n 

is not homogeneous differential equation, but by making some change we can reduce it to the case of 

homogeneous differential equation. 

Case-I a /=  b  . In order to solve differential equation having this case, let x = x′ + h and y = y ′ + k, 

where h and k are constants.Also, dx = dx ′ and dy = dy ′. Then equation (2.6) reduces to 

dy ′ 
= 

ax′ + by ′ + ah + bk + c 

 

 
(2.7) 

dx′ lx ′ + my ′ + lh + mk + n 
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In this equation we select h and k by solving ah + bk + c = 0 and lh + mk + n = 0 such that equation 
(2.7) will turn out to homogeneous differential equation d y

′ 

= ax′+by′ , where al − bm /= 0. Which is 
dx′ ′ ′ lx ′  +my ′ 

homogeneous in the variables x and y . So solve it by putting y ′ = vx′. 

Case-II a =  b  . In this case al − bm = 0,and hence h and k will be indetermined or infinity. Hence 
put a =  b  = t , where t is constant in equation (2.6) we get 

l m 

dy 
= 

(lx + my)t + c 
. (2.8)

 

dx (l x + my ) + n 

Now by substitute lx + my = t in equation (2.8) we can solve the given differential equation. Let us 
see the following examples to understand this method well. 

Examples 2.5. (1) d y = y+x−2 . Solution: The differential equation is given by 
dx y −x−4 

dy 
= 

y + x − 2 (2.9) 

dx y − x − 4 

is not homogeneous differential equation. By comparing with (2.6) we get a = 1, b = 1, l = −1, m = 1. 

Here, a = −1 /=  b  = 1. Hence substitute x = x′ + h and y = y ′ + k in equation (2.9) we get, 
l m 

dy ′ 
= 

y ′ + x′ + (k + h − 2) (2.10) 

dx′ y ′ − x′ + (k − h − 4) 

To convert equation (2.10) in homogeneous differential equation we take k + h − 2 = 0 and k − h − 4 = 0, 

by solving we get h = −1, k = 3. Hence with these values of h and k equation (2.10) reduces to, 

dy ′ 

= 
y ′ + x′ 

, which is homogeneous differential equation. (2.11) 

dx′ y ′ − x′ 

In order to solve put y ′ = vx ′ and d y = v + x′  dv  in equation (2.11) we obtain, 
dx dx′ 

v + x′  dv  
= 

vx ′ + x′ 
= 

v + 1 

dx′ vx ′ − x′ v − 1 

′ dv v + 1 1 + 2v − v2 

∴ x 
dx ′ 

= 
v − 1 

− v − 
v − 1 

∴ 
 v − 1  

dv = 
dx ′ 

, which is separable variable form 

1 + 2v − v2 x′ 

By integrating term by term we get, 
, 

 v − 1  
dv = 

, 
dx ′  

+ c, where c is an arbitrary constant. 
 

1 + 2v − v2 x′ 

∴ − 
1 

, 
 2 − 2v  

= log x′ + c 

2 1 + 2v − v2dv 
µ 

y ′ y ′2 ¶ 
′2

 

∴ log 1 + 2 
x′ 

− 
x′2  

+ log x = −2c 



10 CHAPTER 2. DIFFERENTIAL EQUATIONS OF FIRST ORDER AND FIRST DEGREE. 
 

= 

, 

= 

, 

+

 

3 

dx 

l 2 m 
− 

dx 
= 

dx 

dx 2x2 

 

 

 

∴ log(x′2 + 2x′ y ′ − y ′2) − log x′2 + log x′2 = −2c 

∴ x′2 + 2x′ y ′ − y ′2 = e−2c = c′ 

by substituting x′ = x +1 and y ′ = y −3, we get x2+2xy − y 2−4x +8y −14 = c′, which is general equation 

of given differential equation. (2)(x − y + 2)dx + (2x − 2y − 4)dy = 0 

Solution: The differential equation is given by, 
 

dy 
= − 

 x − y + 2  
 

(2.12) 

dx 2(x − y ) − 4 

is not homogeneous differential equation. By comparing with (2.6) we get a = −1, b = l , l = 2, m = −2. 

Here, a = − 1 =  b . Therefore h and k can not be determined. Put x − y = z and 1 d y dz in equation 

(2.12) we get, 

1 − 
dz 

+ 
z + 2 

= 0
 

dx z − 4 

∴ 
dz 

+ 
3z − 2 

= 0
 

dx 2z − 4 

∴ 
2z − 4 

dz dx,  which is separable variable form. 

3z − 2 

In order to get solution integrate the terms separately we get 

2z − 4 
dz dx c, where c is an arbitrary constant 

3z − 2 

∴ 

, 
2 3z − 2 − 4 

dz = 

, 

dx + c 

3  3z − 2 

∴ 
2 
, µ

1 − 
 4  

¶ 

dz = x + c 

3 3z − 2 

∴ 
2 

·

x − y − 
4 

log[3(x − y ) − 2]

¸ 

= 3x + c′, where c′ = 3c 

3 3 

∴ x + 2y + 
8 

log[3(x − y ) − 2] + c′, which is a general solution. 

 

Exercise-II 

 
Identify type of the following differential equations and solve them. 

1. 2y d y = x2 + sin 3x.  (Ans: 3y 2 = x3 − cos 3x + c.) 

2. 3ex tan ydx + (1 − ex ) sec2 ydy = 0.  (Ans: tan y = c(1 − ex )3.) 

3. y d y + 2(x2+y2)−1 = 0.  (Ans: 2x2 + y 2 + 3 log(x2 + y 2 − 2) = c.) 
 

x dx x2+y 2+1 

4. x4 d y + x3 y + cosec(xy ) = 0. (Ans: cos xy +  1  = c.) 
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dx 

dx 

dx 

dx 

y 

dx 

dx 

dx dx 

dx x x 

dx dx 

x−y +1 x+1 

 

 

 

5. y − x d y = a 

³
y 2 + d y 

´
.  (Ans: (x + a)(1 − ay ) = cy .) 

6. x d y = y + cos2 
¡ y ¢ 

.  (Ans: tan
¡ y ¢ 

= log|cx| 

7. y 2 + x2 d y = xy d y .  ( Ans: y = x log y + cx). 

8. y − x d y = 
√

y 2 − x2.  ( Ans: y + 
√

y 2 − x2 = c.) 

9. x+y+1 .  ( Ans: tan−1  y  = log

³
c
√

(x + 1)2 + y 2
´
). 

 
10. d y = x+2y−3 .  ( Ans: (x + y − 2)(x − y )−3 = c). 

dx 2x+y −3 

11. (3y + 2x + 4)dx − (4x + 6y + 5)dy = 0.  ( Ans: 21x − 42y + 9 log(14x + 21y + 22) = c′). 

12. (2x + 9y − 20)dx = (6x + 2y − 10)dy.  ( Ans: (y − 2x)2 = c(x + 2y − 5)). 

 

2.4 Linear di erential equations. 

Definition 2.6. A differential equation of the form d y + P y = Q, where P and Q are either constants 

or functions of x is said to be linear differential equation of first order. For example, d y + (sec2 x)y = 

sec2 x tan x is linear differential equation of first order. 

 
In order to solve the linear differential equation we use the method of separable variable.  Linear 

differential equation of first order is given by 

dy 

dx 
+ P y = Q, where P and Q are either constants or functions of x. (2.13) 

First we solve d y + P y = 0 by using separable variable method. For 

, 
dy 

= −

, 

Pdx + c. where c is an arbitrary constant. 

log y = −

, 

Pdx + c′. 

∴ y = e−
,
Pdxe−c ′  . 

∴ y = e−
,
Pdxc. 

Now differentiate on both sides with respect to x we get, 

e
,
Pdx dy 

+ ye
,
Pdx P = 0. 

e
,
Pdx 

µ 
dy 

+ P y 

¶ 

= 0. 
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dx 

dx 

, 

dx 

dx 

x 1 x 1 

+ 

1 + x 

dx dx 

 

 

 

∴ 
 d  ³

ye
,
Pdx 

´
= e

,
Pdx 

µ 
dy 

+ P y 

¶ 

= 0. (2.14) 

Since e
,
Pdx /= 0 we multiply equation (2.13) by e

,
Pdx on both sides we get 

e
,
Pdx 

µ 
dy 

+ P y 

¶ 

= Qe
,
Pdx . 

 

∴ 
 d  

(ye
,
Pdx ) = Qe

,
Pdx . 

By integrating on both sides we have 

, 
 d  

(ye
,
Pdx )dx = 

,

Qe
,
Pdxdx + c. 

∴ ye
,
Pdxdx = 

,

Qe
,
Pdxdx+c, where c is an arbitrary constant. Which is the general solution of the given differentia 

Remark 2.7. Here we can solve the equation by multiplying the given differential equation by e
,
Pdx

 

and hence we call e
,
Pdx an integrating factor denoted by I. F then here I .F = ePdx. Therefore the 

general formula for finding the solution of linear differential equation is given by 

y (I .F.) = 

,

Q(I .F.)dx + c. 

 

Examples 2.8. (1) Solve: (x + 1) d y + 2y = 1. 

Solution: To convert the given differential equation in general form of the linear differential equation 

we divide both side by (x + 1). 
dy 2 1 

∴ 
dx 

+ 
x + 1 

y = 
x + 1 

.
 

Compare this with equation (2.13) we get P = 2  and Q = 1 . 
+ + 

∴ e
,
Pdx = e

, 

x 
2 

1 dx = e2 log(x+1) = (x + 1)2. 

 

Now we know the general formula for finding the solution of differential equation is 

ye
,
Pdx = 

,

Qe
,
Pdxdx. 

 

By substitutes values we get 

y (x + 1)2 = 

, 
 1  

(1 + x)2dx + c. 

 

y (x + 1)2 = 

,

(x + 1)dx + c = 
x2 

2 
+ x + c. 

 

y (x + 1)2 = 
x2 

2 
+ x + c. Which is a general solution. 

 

(2) Solve: (1 + y 2)dx = (tan−1 y − x)dy. 
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dy 

− = = 

dx 

dx 

dx 

 

 

 

 

In the given differential equation the term containing x is 1 with degree 1. Therefore the equation can 

be converted to a differential equation which is linear in x given by dx + Px = Q. 

dx 1 tan−1 y 
∴ 

dy 
+ 

1 + y 2 
x =

 1 + y 2 

Comparing this equation with general form we get, P =   1  and Q = tan−1 y . 
 

 
∴ I .F 

 

e
,
Pdy 

1+y 2 

e

, 
1 

2 dy 

 

 

etan−1 y . 

1+y 2 

= = 1+y = 

Now put this value in general formula given by xe
,
Pdy = 

,
Qe

,
Pdy dy we get 

 

xetan−1 y = 
tan−1 y 

1 + y 2 
e
 

 

tan−1 y 

 

dy + c 

where c is an arbitrary constant. Now for right hand side integration we take tan 1 y t,  d y  dt we 
1+y 2 

get 
 

 

By integrating by parts we get 

 

 

 

 

which is a general solution. 

∴ xetan
−1 y = 

, 

tet dt + c. 

 

xetan
−1 y = te t − 

, 

1et dt + c. 

∴ xetan
−1 y = (tan−1 y − 1)etan

−1 y + c 

 

2.5 Bernoulli's di erential equations. 

Definition 2.9. A differential equation of the form d y + P y = Qyn ,  n ∈ R \ {0} is said to be Bernoulli’s 

differential equation 

In order to solve Bernoulli’s differential equation we will use the method of solving linear differential 

equation. Bernoulli’s differential equation is given by 

dy 

dx 
+ P y = Qy 

 
n , n ∈ R \{0}. (2.15) 

Divide both sides by yn we get y −n d y + y 1−nP = Q. Now multiply by (1 − n) both sides we get 

(1 − n)y −n 
dy 

+ (1 − n)y 1−nP = (1 − n)Q. (2.16) 

 
Now put v = y (1−n) and dv = (1 − n)y −n d y in equation (2.16) we get 

dx dx 

dv 

dx 
+ (1 − n)Pv = (1 − n)Q (2.17) 

, 
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dx 

x 

2 

dx 

dx 
1 

x 

 

 

 

Which is linear in variable v and can be solved by method of linear differential equation. Hence 

substitute 

 

in equation ve
,
Pdx = 

,
Qe

,
Pdx + c 

∴ I .F. = e
,
Pdx = e

,
(1−n)Pdx 

∴ ve
,
(1−n)Pdx = 

,

(1 − n)Qe
,
(1−n)Pdxdx + c 

∴ y 1−ne
,
(1−n)Pdx = 

,

(1 − n)Qe
,
(1−n)Pdxdx + c. 

where c is an arbitrary constant . Which is a general solution. 

Examples 2.10. (1)Solve:  x d y + y = x3 y 6 

Solution: The given differential equation is not linear in x also not linear y. To convert it into Bernoulli’s 

form we divide the equation by xy 6 we get 

y −6 
dy 

+ y −5 
1 

= x2. (2.18) 

dx x 

∴ put y −5 = v and −5y −6 d y = dv in equation (2.18) we get dv − 5 v = −5x2 which is linear in v. Hence 
dx dx dx x 

5 2
 

comparing with general form of linear differential equation we get P = − 
x 

and Q = −5x 

I .F. = e
,
Pdx = e

, 
−5 dx = x−5. 

. Now 

Now formula for solution is given by 

where c is an arbitrary constant. 

ve
,
Pdx = 

,

Qe
,
Pdxdx + c 

∴ y −5x−5 = 

, 

−5x2x−5dx + c 

 

∴ y −5x−5 = 
5 

x−2 + c, where c is an arbitrary constant. Which is a general solution. 

 

(2) Solve: x d y − y = y 2 log x. 

Solution: To convert this equation in form of Bernoulli’s differential equation we divide both sides by x 

we get 
dy 1 log x  2 

dx 
− 

x 
y = 

x  
y . 

Now comparing with the general form of Bernoulli’s differential equation d y + P y = Qyn , we get P = 
log x 

− 
x 

;Q = with n = 2. Therefore the solution is given by 

y 1−ne
,
(1−n)Pdx = 

,

(1 − n)Qe
,
(1−n)Pdx + c. 
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x 

x 

dx 

+ = 

dx 

2  = 2 

u 

dx dx dx 

dx x x 

 

 

 

∴ y −1x = 

, 

−1 
log x 

xdx + c. 

∴ −

, 

log xdx + c =⇒ −[log xx − 

, 
1 

xdx] + c. 

∴ x = y (c + x − x log x). Which is a general solution of the given differential equation. 

Remark 2.11. The general form of Bernoulli’s differential equation d y + P y = Qyn ; n ∈ R \{0} is given 
by 

f ′(y ) 
dy 

f (y )P Q. 
dx 

In order to solve this we put u = f (y ) we get du = f ′(y ) d y in general form we get du + Pu = Q, which is 

linear differential equation. Let us see the following examples to understand. 

Examples 2.12. (1) Solve: sin y d y + x cos y = x. 
Solution: Here u = cos y and du = −sin y d y . Substitute these values in given differential equation we 

get 
dx dx 

 

du 

dx 
− xu = −x. 

Which is linear differential equation in variable v. Therefore solution is given by 

u(I .F.) = 

,

Q(I .F.)dx + c. 
 

 

ue 
−x2 

 

1 x2 

,

(− x) e 
−x2 

dx 

 

+ c. 

cos y = 
2 

+ ce 2 . Which is a general solution. 

(2) Solve: d y + y log y = y (log y )2. 

Solution: Divide both sides by y we get 

1 dy 1 1 2 

y dx 
+ 

x 
log y = 

x 
(log y ) . 

Now put u = log y, we get 1 d y = du . Substitute these values in above equation we get 
y dx dx 

du u u2 1 du 1 1 1 

dx 
+ 

x 
= 

x  
=⇒ 

u2 dx 
+ 

x u 
= 

x 

. Which is in the form of Bernoulli’s differential equation. By putting 1 = t and solving it we get 

(log y )−1 = 1 + cx which is general solution of given differential equation. 

 

Exercise-III 

 
Identify type of the following differential equations and solve them. 
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dx 

dx 
2 

dx 

dx 

dx 

dx 

dx 

dx 

dx 

dx 

dx 

dx 

dx 

dx 4 
− 

16 
+ 

dx y 4 2 

 

 

 

1. d y + y cos x = sin x cos x (Ans: y = sin x + ce−sinx − 1.) 

 

2. d y + 2xy = 2x, also y = 3 when x = 0 obtain a particular solution.  (Ans: y = 1 + ce−x
2 

and P.S. 

isy = 1 + 2e−x .) 

 

3. d y + y tan x = sec x.  (Ans: y = sin x + c cos x.) 

 

4. cos2 x d y + y = tan x. (Ans: y = tan x − 1 + ce−t anx .) 

 

5. (1 + x2)dy = (tan−1 x − y )dx. (Ans: y = tan−1 x − 1 + ce−tan
−1 x .) 

 

6. x d y + 2y = x2 log x. (Ans: y = x
2 

log x x2 

cx−2.) 

 

7. d y + y cot x = 5ecosx .  (Ans: y sin x = −5ecosx+c .) 

 
8. d y + 2y tan x = sin x,also obtain particular solution with y = 0 when x = π . (Ans: y sec2 x = 

dx 3 

sec x + c; P.S = y sec2 x = sec x − 2) 

 

9. (x + 2y 3) d y = y .  (Ans: x = y 3 + cy .) 

 

10. x log x d y + y = 2 log x.  (Ans: y log x = (log x)2 + c.) 

 

11. d y + y tan x = y 3 sec x. (Ans: cos2 x = y 2(c + 2 sin x)) 
 

2 dy 1 2 
−y2 

12. xy (1 + xy ) 
dx 

= 1.  (Ans: 
x 

= (2 − y ) + ce 2 .) 

13. d y + y tan x = cos x .  (Ans: y 2 = cos2 x 
£

c + logtan
¡ 

x + x 
¢¤

.) 

 

14. sec2 y d y + x tan y = x3.  (Ans: tan y = x3 − 3x2 + 6x − 6 + ce−x .) 
 

15. (x3 y 3 + xy )dx = dy . (Ans: y −1 = 2 − x2 + 
x2 

2 .) 

 

16. d y + y cos x = y 3 sin 2x.  (Ans: y −2 = 2 sin x + 1 + ce2sinx .) 

17. x d y = y − 
¸

y .  (Ans: 4c2x = (y − 1 − c2x)2.) 

 

18. x3 d y − x2 y + y 4 = 0. (Ans: y 3(3x + c) = x3.) 

 

19. d y + y log y = xyex . (Ans: x log y = (x − 1)ex + c.) 

ce 
−
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2.6 Exact di erential equations. 

Definition 2.13. A differential equation M (x, y )dx + N (x, y )dy = 0 is said to be exact if there exists a 

function f (x, y ) such that d [ f (x, y )] = Mdx + Ndy. That is, 

∂f 
dx + 

∂f 
dy = Mdx + Ndy.  

∂x ∂y 

In other words if a differential equation can be obtain by direct differentiation of its solution, then we 

call it an exact differential equation. 

Necessary and Sufficient Condition for differential equation M (x, y )dx + N (x, y )dy = 0 to be exact: 

Theorem 2.14. The necessary and sufficient condition for the differential equation M (x, y )dx+N (x, y )dy = 
0 to be exact is 

∂M ∂N 

∂y 
= 

∂x 
.
 

Where ∂M and ∂N denotes the partial derivatives of M and N with respect to y and x respectively. 
∂y ∂x 

In order to solve an differential equation of the type M (x, y )dx + N (x, y )dy = 0, first check the condi- 

tion of exactness, ∂M = ∂N . If the condition satisfied, then the given differential equation is exact and 
∂y ∂x 

solution is given by 

, 

 
y constant 

Mdx + 

,
¡ 

Terms in N which are independent of x 
¢ 

dy = c. 

 

Where c is an arbitrary constant. 

 

Examples 2.15. (1)Solve: (x2 − ay )dx + (y 2 − ax)dy = 0. 

Solution: Here M (x, y ) = x2 − ay and N (x, y ) = y 2 − ax 

∂M ∂N 
∴ 

∂y 
= −a and 

∂x 
= −a. 

 

Therefore the given differential equation is an exact differential equation. The solution is given by 

, 

 
y constant 

Mdx + 

,
¡ 

Terms in N which are independent of x 
¢ 

dy = c. 

∴ 
, 

y constant 

(x2 − ay )dx + 

, 

y 2dy = c 

x3 

∴ 
3 

− ayx + 
y 3 

3 
= c. 

x3 + y 3 − 3axy = 3c. Which is a general solution. 
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− 

∂y ∂x 

 

 

 

 

 

(2) Solve: 
dy 

+ 
y cos x+sin y+y 

= 0.
 

dx sin x+x cos y +x 

Solution: We write this equation in the form M (x, y )dx + N (x, y )dy = 0, we get (y cos x +sin y + y )dx + 

(sin x + x cos y + x)dy = 0. and also M (x, y ) = y cos x + sin y + y, N (x, y ) = sin x + x cos y + x. 

∂M ∂N 
∴ 

∂y 
= cos x + cos y + 1 = 

∂x 
. 

 

Therefore the given differential equation is an exact differential equation. The solution is given by 

, 

 
y constant 

Mdx + 

,
¡ 

Terms in N which are independent of x 
¢ 

dy = c. 

∴ 
, 

y constant 

(y cos x + sin y + y )dx + 

, 

0dx = c. 

∴ y sin x + x sin y + yx = c. Which is a general solution . 

Remark 2.16. If condition ∂M /= ∂N , then the given differential equation is not exact. In this case, if 

there exist some function f (x, y ) of two variables such that 

f (x, y )[M (x, y )dx + N (x, y )dy = 0] 

become exact, then f (x, y ) is called an integrating factor denoted by I .F. For example, the differential 

equation x d y + 2y + 3x = 0 is not exact, but by multiplying with x we getx2 d y + 2yx + 3x2 = 0 which is 
dx dx 

an exact differential equation. Thus, here integrating factor is x. 

Rules for Integrating factor for M (x, y )dx + N (x, y )dy = 0: 

 

1. If M (x, y )dx + N (x, y )dy  = 0 is homogeneous differential equation with Mx + Ny /= 0, then 
integrating factor will be 1 . 

+Ny 
 ∂M  ∂N 

2. If 
∂y 

− 
∂x 

N 
is only function of x say f (x), then e

, 
f (x)dx will be an integrating factor. 

 ∂M  ∂N 

3. If 
∂y 

− 
∂x 

M 
is only function of y say g (y ), then e

, 
g (y )dy will be an integrating factor. 

4. If given differential equation is of the form f1(x, y )ydx + f2(x, y )xdy = 0, then integrating factor 

will be 
Mx

1 
Ny 

, where Mx − Ny /= 0. 

Examples 2.17. (1) Solve:(x2 + y 2 + 2x)dx + 2ydy = 0. 

Solution: Comparing the given differential equation with M (x, y )dx + N (x, y )dy = 0, we get M (x, y ) = 
x2 + y 2 + 2x and N (x, y ) = 2y. Here ∂M /= ∂N , therefore the given differential equation is not exact. 

 ∂M  ∂N ∂y ∂x 

Notice that, 
∂y 

− 
∂x 

N = 1 which is only function of x say f (x). Hence I .F. = e
, 

f (x)dx = ex. 

∴ I .F [(x2 + y 2 + 2x)dx + 2ydy = 0] which is now reduced to an exact differential equation. 

Mx 
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, 
x 2 2 

, 
2 2  x 

∂y 

∂x 

Mx Ny 

= − . 

y 4 

−x 
+

 

y 

+ = 

= + 
−x  

∂y ∂x 

 

 

 

Now, ex [(x2 + y 2 + 2x)dx + 2ydy ] = d ((x2 + y 2)ex ) = 0 

Thus, the solution is  e [(x + y + 2x)dx + 2ydy ] = d ((x + y )e ) = c, where c is an arbitrary con- 

stant. ∴ (x2 + y 2)ex = c is a general solution. 

(2) Solve: (xy sin(xy ) + cos(xy ))ydx + (xy sin(xy ) − cos(xy ))xdy = 0. 

Solution: Comparing the given differential equation with M (x, y )dx + N (x, y )dy = 0, we get M (x, y ) = 

(xy sin(xy ) + cos(xy ))y and N (x, y ) = (xy sin(xy ) − cos(xy ))x. Here ∂M = x2 y 2 cos(xy ) + yx sin(xy ) − 

yx sin(xy ) +cos(xy ) /= x2 y 2 cos(xy ) + 3yx sin(xy ) −cos(xy ) = ∂N , therefore the given differential equa- 

tion is not exact. Notice that, it is of the form f1(x, y )ydx + f2(x, y )xdy = 0, therefore integrating factor 
will be   1  =    1    , where Mx − Ny /= 0. 

− 2xy cos(xy ) 

 
1 

∴ I .F.[M (x, y )dx + N (x, y )dy ] = 
2xy cos(xy ) 

[(xy sin(xy ) + cos(xy ))ydx + (xy sin(xy ) − cos(xy ))xdy ] 

is now reduced to exact differential equation. Thus, solution is given by, 
, 

y 
tan(xy ) + 

 1  
dx − 

, 
 1  

dy = log c, 

y constant 2 

where c is an arbitrary constant. 

2x 2y 

y logsec(xy ) 1 1 
∴ 

2 y 
+ 

2 
log x − 

2 
log y = log c. 

x 
∴ logsec(xy ) + log 

y 
= 2 log c 

x = c′ y cos(xy ), which is a general solution. 

(3) Solve: x2 ydx − (x3 + y 3)dy = 0. 

Solution: Comparing the given differential equation with M (x, y )dx + N (x, y )dy = 0, we get M (x, y ) = 

x2 y and N (x, y ) = −(x3 + y 3). Here ∂M = x2 /= −3x2 = ∂N , therefore the given differential equation is 

not exact. Notice that given differential equation is homogeneous differential equation. Hence, I .F 
1 1 Mx Ny y 
+ 4 

∴ I .F.[M (x, y )dx + N (x, y )dy ] = 
−1 

[x2 ydx − (x3 + y 3)dy ] 

is now reduced to exact differential equation. The solution is given by 

 

 

 

 

where c is an arbitrary constant. 

, 

 
y constant 

dx 

, 
1 

dy = log c, 

 

 
3 

∴ 
−x  

log y log c. 
3y 3 

3 

∴ log y log c 
3y 3 

 x3  

∴ y = ce 3y 3 
, which is a general solution. 

= 

2 

y 



 

x 

y 3 y 4 

 

 

 

Exercise-IV 
 

 
1. Check the exactness of the following differential equations and solve it. 

 

1. (x4 − 2xy 2 + y 4)dx − (2x2 y − 4xy 3 + sin y )dy .  (Ans: x5 − 5x2 y 2 + 5y 4x + 5 cos y = c.) 

 

2. (sin x cos y + ex )dx + (cos(xy )x2 + ey )dy = 0.  (Ans: ex − cos x cos y + tan y = c.) 

 

3. (xy cos(xy ) + sin(xy ))dx + (cos x sin y + sec2 y )dy = 0. (Ans: x sin(xy ) + ey = c.) 

 

4. (2xy + y + −tan y )dx + (x2 − x tan2 y + sec2 y )dy = 0. (Ans: x2 y + xy − x tan y + tan y = c.) 

 

5. (y 2exy
2  

+ 4x3)dx + (2xyexy
2 

− 3y 2)dy = 0. (Ans: exy
2 

+ x4 − y 3 = c.) 

 

6. (x2 + y 2 − a2)xdx + (x2 − y 2 − b2)ydy = 0. (Ans: x4 + 2x2 y 2 − y 4 − 2a2x2 − 2b2 y 2 = c.) 

 

7. y sin 2xdx = (1 + y 2 + cos2 x)dy . (Ans: 3y cos 2x + 6y + 2y 3 = c.) 

 

8. 2x dx + y2−3x2 dy = 0. (Ans: x2 − y 2 = cy 3.) 

 

9. 
£

y 
¡
1 + 1 

¢ 
+ cos y 

¤ 
dx + (x + log x − x sin y )dy . (Ans: y (x + log x) + x cos y = c.) 

 

10. (sin x sin y + sec2 x)dx + (tan2 y − cos x cos y )dy = 0. (Ans: tan x − cos x sin y + tan y − y = c.) 

 

2. Solve the following differential equations using integrating factor. 

 

1. (xy sin(xy ) + cos(xy ))ydx + (xy sin(xy ) − cos(xy ))xdy = 0.  (Ans: x = cy cos xy .) 
 

 

 x3  

2. x2 ydx − (x3 + y 3)dy = 0. (Ans: y = ce 3y 3 .) 

 

3. (y + y 2 − y 3)dx − (x + xy 2 − y )dy = 0.  (Ans: x + xy + y log y − xy 2 = cy .) 
 

 
x 

4. ydx + (y − x)dy = 0.  (Ans: ye y = c.) 

 

5. (x2 y − 2xy 2)dx + (3x2 y − x3)dy = 0.  (Ans: x − 2y log x + 3y log y = cy .) 

 

20 
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Index 3 

Di erential Equation of First order 

and Higher degree. 
 

 
 
 

 
The general form of differential equation of first order and higher degree is 

 

dy n 

dx 

 

+ P1 
dy n−1 

dx 

 

+ P2 
dy n−2 

dx 

dy 
+ . . . + Pn−1 

dx 
+ Pn = 0. 

 

Where each Pi is a function of x and y . If d y = p, then the general form reduces to 

 

pn + P1pn−1 + P2pn−2 + . . . + Pn−1p + Pn = 0. 

 

Hence it also can be written as F (x, y, p) = 0. In this chapter we study following methods of solving 
differential equation of first order and higher degree. 

Method of solving differential equation of the form F (x, y, p) = 0. 
 

 
1. Differential equations which are solvable for p. 

 

2. Differential equations which are solvable for x. 

 

3. Differential equations which are solvable for y . 

 

4. Clairaut’s differential equations. 

 
5. Lagrange’s differential equations. 
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2 
y x 

dx dy y x 

 

 
3.1 Di erential equations which are solvable for p. 

Suppose we can write the differential equation F (x, y, p) = 0 of degree n in the form 

(p − f1(x, y ))(p − f2(x, y ))(p − f3(x, y ))· · · (p − fn(x, y )) = 0. (3.1) 

Now comparing each factor with zero we get p − fi (x, y ) = 0, where i = 1, 2,.. ., n. Which is linear differ- 

ential equation. Suppose solution of p − fi (x, y ) = 0 is given by Fi (x, y, ci ) = 0. Where ci is an arbitrary 

constant. Instead of taking different ci ’s in the general solution of p − fi (x, y ) = 0 if we take only one c 

in all, then it makes no difference in general solution. Therefore general solution p − fi (x, y ) = 0 will be 

Fi (x, y, c) = 0. Then general solution of equation (3.1) is given by F1(x, y, c)F2(x, y, c)··· Fn(x, y, c) = 0. 

Thus, differential equation of n degree and first order having linear factor p − fi (x, y ) = 0 are known 
as solvable for p. 

Examples 3.1. (1)Solve: xyp 3  + (x2 − 2y 2)p2 − 2xyp = 0 

Solution: The given differential equation is of degree 3 and therefore it has three linear factor. 

 

p[xyp2  + (x2 − 2y 2)p − 2xy ] = 0. 

∴ p[xyp2  + x2p − 2y 2p − 2xy ] = 0. 

∴ p(xp − 2y )(yp + x) = 0. 

Comparing these three linear factor with zero we get 

1. p = 0 =⇒ y − c = 0. 

2. xp − 2y = 0 =⇒ d y = 2 dx =⇒ y = cx . 

3. yp + x = 0 =⇒ ydy + xdx = 0 =⇒ x2 + y 2 − 2c = 0. 

Therefore, the general solution is given by multiplying these three solutions of linear factors of given 

equation. ∴ (y − c)(y − cx2)(x2 + y 2 − 2c) = 0. Which is a general solution. 

(2)Solve: d y − dx = x − y . 
Solution: put p = d y we get p − 1 = x − y . 

dx p y x 

∴ p2 + p 

µ 
y 

− 
x 

¶ 

− 1 = 0. 

x y 

∴ 
³
p + 

y ́
µ

p 
x 

¶ 

0. 

x 

Now comparing the linear factors with zero we get 

− 
y  

= 

1. 
dy y 

dx 
+ 

x 
= 0 =⇒ xdy + ydx = 0. =⇒ d (xy ) = 0 =⇒ xy = c 

2. 
dy y 2 2 

dx 
− 

x 
= 0 =⇒ xdy − ydx = 0. =⇒ x − y = c 
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Thus, the general solution can be obtained by multiplying the general solutions of the linear factors of 

given differential equation. 

 

Which is a general solution. 

(xy − c)(x2 − y 2 − c) = 0. 

 

Exercise-V 

 
Solve the following differential equations. 

1. p2 − (x + 3y )p + 2y (x + y ) = 0.  (Ans. (y − ce−2x )(x + y − 1 − cex ) = 0.) 

2. p2 − 7p + 10. (Ans. (y − 5x − c)(y − 2x − c) = 0.) 

3. p(p + y ) = x(x + y ). (Ans. (2y − x2 + c)(y + x + ce−x − 1) = 0.) 

4. yp2  + (x − y )p − x.  (Ans. (x − y + c)(x2 + y 2 + c) = 0.) 

5. p3 + 2xp2 − y 2p2 − 2xy 2p = 0.  (Ans. (y − c)(y + x2 − c)(xy + cy + 1) = 0.) 

6. p2 + 2py cot x − y 2 = 0.  (Ans. y (1 ± cos x) = c.) 

7. x2p2 + xyp − 6y 2 = 0.  (Ans. (y − cx2)(x3 y − c) = 0.) 

8. y 2p2 − x2 = 0.  (Ans. (x2 + y 2 + c)(x2 − y 2 + c) = 0.) 

9. p2 + 2p cos 2x − sin2 x = 0. (Ans. (2y + 2x + sin 2x + c) = 0.) 

 

3.2 Di erential equations which are solvable for y . 

If the differential equation of the form F (x, y, p) = 0 can be written as y = f (x, p) = 0, then it is said to 

be solvable for y . In order to solve these types of differential equation we differentiate with respect to 

x we get 
dy 

= p = 
∂f  

+ 
∂f dp 

= F 

µ

x, p, 
dp 

¶

. (3.2) 

dx ∂x ∂p dx dx 

Which is in variable p and x. Hence its solution is given by g (x, p, c) = 0. By eliminate p from equation 
(3.2) and g (x, p, c) we get function φ(x, y, c) which will be the general solution of the given differential 

equation. If it is not possible to eliminate p, then general solution can be obtained by taking x = 

F1(p, c) and y = F2(p, c). Where c is an arbitrary constant. Let us see following examples to understand 
this method. 

Examples 3.2. (1).Solve: xp2  − 2yp + ax = 0 
Solution: Here, y = 1 xp + 1 ax ; by differentiating with respect to x we get 

2 2 p 

 
dy 1 1  dp a ax dp 

dx 
= 

2 
p + 

2 
x 

dx 
+ 

2p 
− 

2p2 dx 
.
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dx 

dx 

3 

dx 

dp 

 

 

 

∴ p = 
1 

p + 

µ 
1 

x − 
ax 

¶ 
dp 

+ 
1 a 

. 

2 2 p2  dx 2 p 

p = 

µ

x − 
ax 

¶ 
dp 

+ 
a 3 2 dp dp 

=⇒ p − p x + ax − ap = 0. 
p2  dx p dx dx 

∴ (p3 − a) 

µ

p − x 
dp 

¶ 

= 0. 

∴ p − x 
dp 

= 0 or p3 − a = 0. 

dp 
∴ 

p 
= 

dx 

x 
=⇒ log p = log x + log c. 

∴ p = cx. 

Now, substitute p = cx in y = 1 xp + 1 ax we get, y = 1 cx2  + 1 a . Which is a general solution. 
 

3 

(2) xp − y + x 2 = 0. 

2 2 p 2 2 c 

Solution:The given equation can be express in the form y = f (x, p). Therefore it is solvable for y. y = 

xp + x 2 . Differentiate with respect to x we get, 

dy dp 3  1 

dx 
= p + x 

dx 
+ 

2 
x 2 . 

dp 3  1 dp 3 

∴ p = p + x 
dx 

+ 
2 

x 2 =⇒ 
dx 

+ ̧
x 

= 0. 

∴ 

, 

dp + 
3 
, 

dx 
= c =⇒ p + 3

¸
x = c. 

2 
¸

x 

∴ p = c − 3
¸

x. 
3 

Now to eliminate p, substitute its value in equation y = xp + x 2 we get, 

3 

y = cx − 2x 2 . Which is general solution. 

(3) Solve: x + 2(xp − y ) + p2 = 0. 

Solution: The given equation can be express in the form y = f (x, p). Therefore it is solvable for y. 
y = 1 x + xp + 1 p2. Differentiate with respect to x we get, 

2 2 

dy  1 dp dp 

dx 
= p = 

2 
+ p + x 

dx 
+ p 

dx 
. 

dp 1 

Now put x + p = u we get 1 du . 

∴ (x + p) 
dx 

+ 
2 

= 0. 

+ 
dx 

= 
dx 

∴ u 

µ 
du 

− 1

¶

 

1 
+ 

2 
= 0. 
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2u − 1 

2 

3 p 

dy 

dy 

2 2 2 

 

 

 

∴ 
du 

= 
2u − 1 

=⇒ 
 2u 

du = dx. 
dx 2u 2u − 1 

∴ 

, µ

1 + 
 1  

¶ 

+ 

, 

dx + c. 

1 
∴ u + 

2 
log(2u − 1) = x + c. 

1 
∴ x + p + 

2 
log(2x + 2p − 1) = x + c. 

1 
∴ 2p + 

2 
log(2x + 2p − 1) = c. 

∴ 2x + 2p − 1 = e2p−c . 

∴ x = 
1 

e2p−c + 1 − p. 

Here we can not eliminate p from above equation. Hence, the general solution can be obtained from 

y = 1 x + xp + 1 p2 and x = 1 e2p−c + 1 − p. 

 

3.3 Di erential equations which are solvable for x. 

If the differential equation of the form F (x, y, p) = 0 can be written as x = f (y, p) = 0, then it is said to 

be solvable for x . In order to solve these types of differential equation we differentiate with respect to 

y we get 
dx 

= p = 
∂f  

+ 
∂f dp 

= F 

µ

x, p, 
dp 

¶

. (3.3) 

dy ∂y ∂p dy dy 

Which is in variable p and y . Hence its solution is given by g (y, p, c) = 0. By eliminate p from equation 
(3.3) and g (y, p, c) we get function φ(x, y, c) which will be the general solution of the given differential 

equation. If it is not possible to eliminate p, then general solution can be obtained by taking x = 

F1(p, c) and y = F2(p, c). Where c is an arbitrary constant. Let us see following examples to understand 
this method. 

Examples 3.3. (1)Solve: y 2p2 − 3xp + y = 0. 

Solution: The given differential equation is of the form x = f (y, p), where f (y, p) = 1
 

 

³ 
y 

+ y 2p

´
. Now 

differentiate with respect to y we get 

dx 1 ∴ 3 = 3 1  y dp 2 dp + 2yp + y . 

dy p 
= 

p 
− 

p2 dy dy 

∴ 2yp − 
2 

+ 

µ

y 2 − 
 y  

¶ 
dp 

= 0. 

p p2  dy 

∴ 2p(yp2 − 1) + y (yp2 − 1) 
dp 

= 0. 

∴ (yp2 − 1) 

µ

2p + y 
dp 

¶ 

= 0. 
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dy 

p 

y 2 

p 

p 

2 2 

p 

 

 

 

We ignore yp2  − 1 = 0 we get and consider 2p + y dp = 0. 
 

dp 
∴ 

p 
+ 2 

dy 

y 
= 0. 

∴ log p + 2 log y = log c. 

∴ py 2 = c =⇒ p = 
 c  

. 

Hence, substitute value of p we get y 3 − 2cx + c2 = 0. Which is a general solution. (2)Solve:x = p + 1 . 

Solution: It is easy too see that this differential equation is solvable for x. By differentiating with respect 

to y we get 
dx 1 dp 1 dp 

∴ 
dy 

= 
p 

= 
dy 

− 
p2 dy 

.
 

1 
µ 

 1  
¶ 

dp 
µ 

p2 − 1 
¶
 

∴ 
p 

= 1 − 
p2  dy 

=⇒ 
p 

dp = dy. 

∴ 

, µ

p − 
1 

¶ 

dp = 

, 

dy + c. 

p2 

∴ y = 
2 

− log p + c. 

Where c is an arbitrary constant. Here, it is difficult to eliminate p. Therefore, general solution can be 

obtained by taking x = p + 1 ; y = 
2 

2 
− log p + c.

 

Exercise-VI 

 

1. y = (1 + p)x + p2.  (Ans:x = −2p + 2 + ce−p ; y = 2 − p2 + c(1 + p)e−p .) 

2. xp − y + 
¸

x.  (Ans:y = cx + 2
¸

x.) 

3. y = 2p + 3p2.  (Ans:x = 2p + 3p2; y = 2 log p + 3p + c.) 

4. y + px = p2x4.  (Ans:xy = c2x − c.) 

5. y 2p2 − 3xp + y = 0.  (Ans:y 3 − 3cx + c2 = 0.) 

6. y = 2px − p2.  (Ans:x = 2 p + cp−2; y = 1 p2 + 2c .) 
3 3 p 

7. y 2 + p2 = 0.  (Ans:y = ±sin(x + c).) 

8. p2 y + 2px = y .  (Ans:y 2 = 2cx + c2.) 

9. y − 2px = tan−1 p.  (Ans:2
¸

cx + tan−1 c.) 

10. xp2 − yp − y = 0.  (Ans:c(1 + p)ep ; y = cp2cp  .) 

11. y = x + a tan−1 p.  (Ans:x + c = a 
£

log(p − 1) − 1 
log(1 + p2) − tan−1 p

¤
; y = x + a tan−1 p.) 
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2 

dx 

dx 

dx 

x dv 

µ ¶ 

= + 

µ ¶ 

 

 

 

12. x2 = a2(1 + p2).  (Ans:x = a
√

1 + p2; y = a 

·

p
√

1 + p2 − log(p + 

q

p + 
√

p2 + 1)

¸

+ c.) 

 
13. p2 = (p − 1)y .  (Ans:x = log(p − 1) +  1  + c; y = p2 .) 

 

p−1 p−1 

14. x =  p  + tan−1 p.  (Ans:x = x =  p  + tan−1 p; y = c −  1  .) 
1+p2 1+p2 1+p 

15. p2 − 4xyp + 8p2 = 0.  (Ans:c(c − 4x)2 = 64y .) 

 

3.4 Clairaut's di erential equations. 

Definition 3.4. A differential equation of the form y = px + f (p) is known as Clairaut’s differential 
equation. 

It is easy to see that Clairaut’s differential equation y = px + f (p) is solvable for y . Hence, in order to 
solve we differentiate with respect to x on both sides we get, 

dy 
= p = p + x 

dp 
+ f ′(p) 

dp 
. 

dx dx dx 

=⇒ ( f ′(p) + x) 
dp 

= 0. 

=⇒ 
dp 

= 0 or x + f ′(p) = 0. 

By taking the case dp = 0 we get p = d y = c. Where c is an arbitrary constant. Thus, by eliminating 
dx 

p from Clairaut’s equation we have the family of straight lines given by y = cx + f (c), as the general 

solution of Clairaut’s differential equation. The later case x + f ′(p) = 0 defines only one solution y (x) 

, so-called singular solution, whose graph is the envelope of the graphs of the general solutions. The 

singular solution is usually represented using parametric notation, as (x(p), y (p)), where p represents 
dy 

dx 

Examples 3.5. (1) Solve: x2(y − px) = yp2. 

Solution: The given differential equation is not Clairaut’s differential equation, but by taking x2 = u 

and y 2 = v we can convert it into the Clairaut’s form. x2 = u =⇒ 2xdx = du, and y 2 = v =⇒ 2ydy = 
dv.  ∴ y d y = dv =⇒ p = . Now given equation reduces to 

x dx du y du 
 

2 
µ 

x2 dv 
¶ 

x2 
µ 

dv 
¶2

 

x y − 
y du  

= y 
y 2  du 

. 

 

 

y 2 − x 
2 dv 

du 
=

 

dv 2 

du 
.
 

v u 
dv 

du 

dv 2 

du 
.
 

. 
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du 

= + 

µ ¶ 

dx 

dx 

dy 

2 

 

 

 

Which is Clairaut’s differential equation. Hence, the general solution can be obtained by taking dv = c. 

Hence v = cu + c2 and y 2 = cx2 + c2 is the general solution. 

(2) Solve: sin px cos y = cos px sin y + p. 

Solution: The given differential equation is not of the Clairaut’s form. Notice that, 

sin px cos y − cos px sin y = p =⇒ sin(px − y ) = p 

. 

px − y = sin−1 p. 

y = px + sin−1 p, which is in Clairaut’s form. 

p = c =⇒ y = cx + sin−1 c, which is a general solution. 

(3) Solve: e4x (p − 1) + e2y p2 = 0. 

Solution: The given differential equation is not of the Clairaut’s form, but by taking e2x = u and e2y = v 

we can convert it into Clairaut’s form. 

v u 
dv 

du 

dv 2 

du 

 

. Which is in Clairaut’s form. 

dv 2 

du 
= c =⇒ v = uc + c =⇒ e2y = ce2x + c . Which is a general solution. 

3.5 Lagrange's di erential equation. 

Definition 3.6. A differential equation of the form y = x f (p)+ F (p) is known as Lagrange’s differential 
equation. 

It is easy to see that Lagrange’s differential equation is solvable for y . Hence, in order to solve this 

differential equation we differentiate with respect to x on both sides we get 

dy 
= p = f (p) + x f ′(p) 

dp 
+ F ′(p) 

dp 
. 

dx dx dx 

∴ p − f (p) = [x f ′(p) + F ′(p)] 
dp 

. 

∴ 
dx 

= 
x f ′(p) + F ′(p)

.
 

dp p − f (p) 

∴ 
dx 

= 
f ′(p)  

x +  
F ′(p)  

.
 

dp p − f (p) p − f (p) 

Which is linear in x and p. So it can be solved by method of linear differential equation d y + P y = Q, 

where P and Q are functions of x only. 

Remark 3.7.  1. An equation of the form x = y f (q)+F (q), where q = dx is also known as Lagrange’s 

differential equation and also can be solved by using method to solve differential equation which 

are solvable for x. 
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3 

p 

c+1 

8 

p c 

1−p (1−p)2 (1−p)2 

 

 

 

2. By taking f (p) = p in Lagrange’s differential equation we get Clairaut’s differential equation. 

Thus, Clairaut’s differential equation is a particular case of Lagrange’s differential equation.  

Examples 3.8. (1)Solve: y = 2px − 1 p2. 

Solution: The given differential equation is solvable for y. In order to solve we differentiate with respect 

to x on both sides we get, 
dy dp 2  dp 

dx 
= p = 2p + 2x 

dx 
− 3 

p 
dx 

.
 

∴ −p = 2 

µ

x − 
1 

p

¶ 
dp 

=⇒ p 
dx 

+ 2 

µ

x − 
1 

p

¶ 

= 0. 

3 dx dp 3 

dx 2 2 

∴ 
dp 

+ 
p 

x = 
3 

. 

Which is linear in variables x and p. Thus, solution can be obtained by, 

x(I .F.) = 

,

Q(I .F.)dx + c 

Where I .F. = e
, 

2 dp 
= e2logp = p2 and Q = 2 . 

 

2 

, 
2 2 

3 

 
2 p3 

∴ xp  = 
3 

p dp + c = 
3
 

3 
+ c. Where c is an arbitrary constant. 

2 c 
∴ x = 

9 
p + 

p2 
. 

Substitute this value of x in given equation we get y = 1 p2 + 2c . Hence, x = 2 p +  c  and y = 1 p2 + 2c is 

a general solution. 
9 p 9 p2 9 p 

 

Exercise:VII 

 
Solve the following differential equation. 

1. y = px + p − p2. (Ans:y = cx + c − c2.) 

2. y = px + m .(Ans:y = cx + m .) 

3. y = xp − p2 + log p.(Ans:y = cx − c2 + log c.) 

4. (x − a)p2 + (x − y )p − y = 0.(Ans:y = cx − a c
2 

.) 

5. y 2p3 − 2xp + y = 0.(Ans:y 2 = cx − 1 c3.) 

6. x + yp = a + bp.(Ans:x2 + y 2 = 2(ax + by + c).) 

7. p2 − 6px + 3y = 0. (Ans:x 2p 
 

3c ; y p2 
6c .) = 

9 
+ 

p2 = 
9 

+ 
p
 

8. x + y = 
³ 

1+p 
´2 

. (Ans:x =   2   + k; y = p2+2p−1 − k.) 



 

x3 

c+4 

5 5 

u v y x 

 

 

 
9. p2 = (p − 1)y (Ans:x = log(p − 1) +  1  + c; y = p2 .) 

 

p−1 p−1 

10. e3x (p − 1) + p3e2y = 0.(Ans:ey = cex + c3.) 

11. (px − y )(x − py ) = 2p.(Hint: x2 = u, y 2 = v). (Ans:c2x2 − c(x2 + y 2 − 2) + y 2 = 0.) 

12. p3 − xp − y = 0.(Ans:x = 3 p2 + ¸k
 and y = 2 p3 − k

¸
p.) 

13. p2(x − 5) + (2x − y )p − 2y = 0.(Ans:y = cx − 5c2 

.) 

14. p2 + 2p cos 2x − sin2 2x = 0.(Ans:(2y + 2x + sin 2x + c)(2y − 2x + sin 2x + c) = 0.) 

15. y 2 = xyp + y3p3 .(Hint: x2 = u, y 2 = v).(Ans:y 2 = cx2 + c3.) 

16. y 2(y − xp) = x4p2. (Hint: x = 1 , y = 1 ).(Ans: 1 = c + c2.) 

 

 

 

 

 

 

Index 4 

Higher Order Linear Di erential 

Equation 
 

 
 
 

 
Definition 4.1. If P1, P2, . . . , Pn, X are functions of x or constants, then 

 

d n y d n−1 y d n−2 y 

dxn  
+ P1 

dxn−1 
+ P2 

dxn−2 
+ · · · + Pn y = X (4.1) 

 

is called n th order linear differential equation. 

 

In equation (4.1) if X = 0, then equation is called homogeneous linear differential equation, otherwise 
it said to be non-homogeneous differential equation. 

 

 

30 

p 
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+ + 

 

 

 

 
Solution of linear equation (4.1) can be separated into two parts. 

(a) P1, P2, . . . , Pn are constants. 

(b) P1, P2, . . . , Pn are functions of x. 

 

In this chapter we discuss the different methods to solve linear differential equation of type (a). 

Theorem 4.2. If y1 and y2 are solutions of equation 

d n y d n−1 y d n−2 y 

dxn  
+ P1 

dxn−1 
+ P2 

dxn−2 
+ · · · + Pn y = 0 (4.2) 

then c1 y1 + c2 y2 (= u) is also its solution, where c1 and c2 are arbitrary constants. 

Proof. Since y = y1 and y = y2 are solution of (4.2), 

dn y1 dn−1 y1
 

dxn  
+ P1 

dxn−1 
+ · · · Pn y1 = 0 (4.3) 

dn y2 dn−1 y2
 

 

Then dn(c1 y1 + c2 y2) 
dxn  

+ P1 
dxn−1 

+ · · · Pn y2 = 0 (4.4) 

dn−1(c1 y1 + c2 y2) 

dxn 
+ P1 

dxn−1 
+ · · · Pn(c1 y1 + c2 y2) 

µ 
dn y1 dn−1 y1

 ¶ µ 
dn y2

 
dn−1 y2 

¶ 

= c1 
dxn  

+ P1 
dxn−1 

+ · · · Pn y1 + c2 
dxn  

+ P1 
dxn−1 

+ · · · Pn y2 

= c1(0) + c2(0) = 0 [by (4.3) and (4.4)] 

dnu dn−1u 

i .e 
dxn  

+ P1 
dxn−1 

+ · · · Pnu = 0 (4.5) 

This proves the theorem. 

Since the general solution of nth order differential equation contains n arbitrary constants, it follows, 

from the above, that if y1, y2, ..., yn are n solution of (4.2), then c1 y1 +c2 y2 +···+cn  yn (= u) is a solution 

of (4.2). This solution is called the Complementary function (C.F.) of equation (4.2). 

If we denote the complementary 

Suppose that y = v be any particular solution of 

dn y dn−1 y 

dxn  
+ k1 

dxn−1 
+ · · · kn y = X (4.6) 

where k1, k2, ...kn are arbitrary constants. 

dn v dn−1 v 
Then 

dxn  
+ k1 

dxn−1 
+ · · · kn v = X (4.7) 

 

Adding (4.5) and (4.7), we have 
dn(u v) 

dxn 
+ k1 

dn−1(u v) 

dxn−1 
+ · · · kn(u + v) = X 

This shows that y = u + v us the complete solution of (4.6). Here y = v is called the Particular solu- 
tion(P.I.) of (4.6). 

∴ The general solution (G.S.) of (4.6) is y = C.F. + P.I. 
Thus in order to solve the equation (4.6), we have to first find the C. F. , and then the P. I. . For a 

homogeneous differential equation the C. F. and G. S. will be same. 
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= 

 

 
4.1 Operator ‘D  ` 

To find the solution of linear differential equation, operator ‘D ‘ play very important role. 

‘D ’ is defined as follow 

D 
d 

, D2 
dx 

d 2 
n

 

= 
dx2  

, ..., D 
dn 

= 
dxn 

dy 
∴ 

dx 
= D y ; 

d 2 y 2 

dx2  
= D 

dn y n 

y, ..., 
dxn  

= D y 

With this notation the equation (4.1) can be written as 

(Dn + P1Dn−1 + · · · + Pn)y = X i .e. f (D)y = X 

where f (D) = Dn + P1Dn−1 + · · · + Pn, i .e. a polynomial in D. 

Thus the symbol D stands for the operation of differentiation and can be treated much the 

same as an algebraic quantity i.e. f (D) can be factorized by ordinary rules of algebra and the factors 

may be taken in any order. 

 

4.2 Rule to nd the Complementary function: 
 

Consider the equation  
dn y 

 

dn−1 y 

dxn  
+ k1 

dxn−1 
+ · · · kn y = 0 (4.8) 

where k1, k2, ...kn are arbitrary constants. 

Then this equation in symbolic form is (Dn + k1Dn−1 + · · · + kn)y = X . Its symbolic co-efficient 

equated to zero i.e. 

Dn + k1Dn−1 + · · · + kn = 0 

is called the Auxiliary Equation (A.E.). 

Since it is an nth order polynomial equation in terms of D, it has n roots say m1, m2, ..., mn. 

 

Case : I If all the roots be real and different, then the G. S. of (4.8) is given by 

y = c1em1 x + c2em2 x + · · · + cnemn x
 

Case : II If two roots are equal (i .e. m1 = m2), then the G. S. of (4.8) is given by 

y = (c1 + c2x)em1 x + · · · + cnemn x
 

If, however, the A.E . has three equal roots (i .e. m1 = m2 = m3), then the G. S. of (4.8) is given by 

y = (c1 + c2x + c3x2)em1 x + · · · + cnemn x
 

Case : III If one pair of roots be imaginary, i .e. m1 = α + iβ, m2 = α − iβ, then the G. S. of (4.8) is 
given by 

y = eαx (c1 cos(βx) + c2 sin(βx)) + c3em3 x + · · · + cnemn x
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dx 

dx 

dt 

= 

 

 

 

Case : IV If two pairs of imaginary roots be equal i .e. m1 = m2 = α + iβ, m3 = m4 = α − iβ, then the 

G. S. of (4.8) is given by 

y = eαx 
¡
(c1 + c2x) cos(βx) + (c3 + c4x) sin(βx)

¢ 
+ c5em5 x + · · · + cnemn x

 

 
d 2 y dy 

Example 4.3. Solve 
dx2  

+ 
dx 

− 2y = 0. 

 

Sol. Let D =  d  . Then given equation reduces to (D2 + D − 2)y = 0. 

Its A.E. is D2 + D − 2 = 0, i .e. (D + 2)(D − 1) = 0 whence D = −2, 1. 

Hence the G. S. is y = c1e−2x + c2e1x . 

d 2 y dy 
Example 4.4. Solve 

dx2  
+ 6 

dx 
+ 9y = 0. 

 

Sol. Let D =  d  . Then given equation reduces to (D2 + 6D + 9)y = 0. 

Its A.E. is D2 + 6D + 9 = 0, i .e. (D + 3)2 = 0 whence D = −3, −3. 

Hence the G. S. is y = (c1 + c2x)e−3x . 

Example 4.5. Solve (D3 + D2 + 4D + 4)y = 0. 

Sol. Here the A.E . is D3 + D2 + 4D + 4 = 0  i .e.(D2 + 4)(D + 1) = 0 ∴ D = −1, ±2i . 

Hence the G. S. is y = c1e−x + e0x [c2 cos(2x) + c3 sin(2x)] = c1e−x + c2 cos(2x) + c3 sin(2x) 

d 4x 
Example 4.6. Solve 

dt 4 
+ 4x = 0. 

 

Sol. Let D =  d  . Then given equation reduces to (D4 + 4)x = 0. 

Its A.E. is D4 + 4 = 0. 

∴ D4 + 4D2 + 4 − 4D2 = 0 

∴ (D2 + 2)2 − (2D)2 = 0 

∴ (D2 + 2 + 2D)(D2 + 2 − 2D) = 0 

∴ D2 + 2 + 2D = 0 or D2 + 2 − 2D = 0 

∴ D 
−2 ± 

¸
−4 

2 
or 

2 ± 
¸
−4 

2 

∴ D = −1 ± i or D = 1 ± i 

Thus the G. S. is y = e−t [c1 cos(t ) + c2 sin(t )] + et [c3 cos(t ) + c4 sin(t )]. 

 

Exercise-I 

 
Que :1 Solve the following differential equation. 
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2 

e 
³ 

a 

¸
2

 ¸
2

 
a 

¸
2

 ¸
2

 

½ ¾ 

=

 

D 

= = 

= 

D 

D − a 

2 2 

4 

 

 

 

1. y ′′ − 2y ′ + 10y = 0 Ans. y = ex [c1 cos(3x) + c2 sin(3x)] 

2. 4y ′′′ + 4y ′′ + 4y ′ = 0 Ans. y = c1 + (c2 + c3 x) e 
−x

 

d 3 y x x 

3. 
dx3  

+ y = 0 Ans. y = c1e− + 2 

 

c2 cos 
³¸

3 
´ 

 

 

+ c3 sin 

³¸
3 
´´ 

 

d 3 y d 2 y dy 2  x 

4. 
dx3  

− 3 
dx2  

+ 3 
dx 

− y = 0 Ans. y = (c1 + c2x + c3x )e 

d 4 y d 2 y 
5. 

dx4  
+ 8 

dx2  
+ 16y = 0 Ans. y = (c1 + c2x) cos(2x) + (c3 + c4x) sin(2x) 

d 4 y 
6. 

dx4
 + a y = 0 Ans y = e 

¸
2 

x
 

³
c1 cos 

³ 
 a  

´ 

+ c2 sin 

³ 
 a  

´´ 

+ e
− ̧

2 
x 

³
c3 cos 

³ 
 a  

´ 

+ c4 sin 

³ 
 a  

´´
.
 

d 4x 4 

Que : 2 If 
dt 4 

= m y , show that x = c1 cos(mt ) + c2 sin(mt ) + c3 cosh(mt ) + c4 sinh(mt ). 

³
Hint: Use sinh x = e

x −e−x 

and cosh x = e
x +e−x 

´
 

4.3 Inverse  Operator: 

1. Definition: 
1
 

f (D) 
X is that function of x, not containing arbitrary constants which when oper- 

ated upon by f (D) gives X . 
  1  

i .e. f (D)  
f (D) 

X X 

Thus y 
 1  

X satisfies the equation f (D)y X and is, therefore, its particular integral. 
f (D) 

2. 
 1 

X = 
,
X dx. 

Let 
 1 

X y . 
D 

Operating by D, D 
 1 

X = D y .  i .e. X = d y . 
D dx 

Integrating both the sides w.r.t. x, we get y = 
, 

X dx. 

Thus 
 1 

X = 
, 

X dx. 

3. 
  1   

X = eax 
,
Xe−ax dx. 

D − a 
1
 

Let 
D − a 

X = y . 

Operating by D − a,  (D − a) 
  1   

X = (D − a)y . ⇒ X 
dy 

i.e. 
dx 

− ay = X , which is a linear equation in first order. 

 

 
dy 

= 
dx 

− 
 
ay . 

So solution is ye−ax = 
, 
Xe−axdx ⇒ y = eax 

, 
Xe−axdx. 

2 2 
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=  = 
,

 

+ 

1 

= 

= 

 

 

 

Thus 
  1   

X y eax Xe−axdx. 

D − a 

Example 4.7. Find 
1
 

D2 + 2D − 15 
e2x. 

Sol.  1  
e2x = 

 1  
e2x 

D2 + 2D − 15 (D + 5)(D − 3) 
1 1 2x 

= 
(D + 5) (D − 3) 

e
 

= 
 1  

e3x 

, 

e−3xe2xdx 

µ

∵ 
 1   

X = eax 

, 

Xe−axdx.

¶

 

(D 5) 
1 2x = −

(D + 5) 
e
 

D − a 

= −e−5x 

, 

e5xe2xdx 

1 2x 

= − 
7 

e 

4.4 Rules for  nding the Particular Integral 
 

dn y dn−1 y 

Consider the equation 
dxn 

+ k1 
dxn−1 

+ · · · kn y = X , 

which in symbolic form is (Dn + k1Dn−1 + · · · + kn)y = f (D)y = X . 

1 

∴ P. I. = 
Dn + k Dn−1 + · · · + k 

Case : I When X eax. 

If f (a) /= 0, then 
  1   

eax = 
 1  

eax . 

X  
1 

X 
f (D) 

f (D) f (a) 

If f (a) = 0, then 
  1   

eax = x 
  1   

eax , provided f ′(a) /= 0. 
f (D) f ′(a) 

If f (a) = 0 and f ′(a) = 0, then 
  1   

eax = x2 
  1  

eax , provided f ′′(a) /= 0, and so on. 

f (D) f ′′(a) 

Case : II When X = sin (ax + b) or cos (ax + b). 

If f (−a2) /= 0, then 
  1  

sin(ax + b) = 
 1  

sin(ax + b). 

f (D2) f (−a2) 

If f (−a2) = 0, then 
  1  

sin(ax + b) = x 
 1  

sin(ax + b), provided f ′(−a2) /= 0. 

f (D2) f ′(−a2) 

If f (a) = 0 and f ′(a) = 0, then 
  1  

sin(ax + b) = x2 
 1  

sin(ax + b), provided f ′′(−a2) /= 0, 

 
and so on. 

f (D2) f ′′(−a2) 

Similarly if f (−a2) /= 0, then 
  1  

cos(ax + b) = 
 1  

cos(ax + b). 

f (D2) f (−a2) 

If f (−a2) = 0, then 
  1  

cos(ax + b) = x 
 1  

cos(ax + b), provided f ′(−a2) /= 0. 

f (D2) f ′(−a2) 

n 
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dx 

1 

dx 

6D2 + 25D + 14 

 1  

 1  

 

 

 

If f (a) = 0 and f ′(a) = 0, then 
  1  

cos(ax + b) = x2 
 1  

cos(ax + b), provided f ′′(−a2) /= 0, 

 

and so on. 
f (D2) f ′′(−a2) 

 
d 2 y d y 4x 

Example 4.8. Solve 
dx2  

− 5 
dx 

+ 6y = e 

Sol. Here given differential equation is non-homogeneous. So general solution is y = C. F. + P. I. 
d 2 y d y 

To find C. F. consider the equation 
d x2 

− 5 
d x 

+ 6y = 0. 

Let D = 
 d  

. Then this equation reduces to (D2 − 5D + 6)y = 0. 

And A.E. is D2 − 5D + 6 = 0. ⇒ (D − 3)(D − 2) = 0. ⇒ D = 3, 2. 

Thus C. F. = c1e3x + c2e2x . 
And 

P. I. = 
 1  

e4x 

D2 − 5D + 6 

= 
16 − 20 + 6 

e
 

 
1 ax 

∵ 
f (D) 

e
 

 
1 

= 
f (a) 

e
 

 

 
Now G. S. =C. F. +P. I. . 

1 4x 

= 
2 

e 

⇒ y = c1e3x + c2e2x 

1 
4x 

+ 
2 

e 

d 2 y d y 

Example 4.9. Solve 6 
dx2  

+ 17 
dx 

− 14 = sin(3x). 

Sol. Here given differential equation is non-homogeneous. So general solution is y = C. F. + P. I. 
d 2 y d y 

To find C. F. consider the equation 6 
d x2 

+ 25 
d x 

+ 14 = 0. 

Let D = 
 d  

. Then this equation reduces to (6D2 + 25D + 14)y = 0. 

And A.E. is 6D2 + 25D + 14 = 0. ⇒ (3D + 2)(2D + 7) = 0. ⇒ D = − 2 , − 7 . 
3 2 

2 7 

Thus C. F. = c1e− 3 
x 
+ c2e− 2 

x 
. 

And 
P. I. = 

 1  
sin(3x) 

1 
µ 

1 1 
¶
 

= 
6(−9) + 25D + 14 

sin(3x)
 

∵ 
f (D2) 

sin(ax + b) = 
f (−a2) 

sin(ax + b) 

1 1 (5D + 6) 
= 

5 
· 

(5D − 6) 
· 

(5D + 6) 
sin(3x)

 
1  (5D + 6) 

= 
5 

· 
(−45 + 6) 

sin(3x) 

= − 
405 

[5D sin(3x) + 6 sin(3x)] 

= − 
405 

[15 cos(3x) + 6 sin(3x)] 

4x 

µ 
ax 

¶
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405 

e 

884 
 1  

3 2 3 
. 

m 

= 
  1  

m = 1 m 

= 

7 2 25 

 

 

 

 
Now G. S. =C. F. +P. I. . 

2 7 

⇒ y = c1e− 3 
x 
+ c2e− 2 

x 
−  1  [15 cos(3x) + 6 sin(3x)] 

 

 

Exercise-II 

 

Que : 1 Find the value of (i ) 
1
 

D2 + 2D − 15 

e2x .  (i i ) 
1
 

D2 + 6D − 9 
e−3x .  (i i i ) 

1
 

D3 + D2 − D − 1 
cos(2x). 

³
Ans. : (i ) − 1 e2x (i i ) 1 x2e−3x (i i i ) −  1  (2 sin(2x) + cos(2x))

´
 

 
Que : 2 Solve the following differential equation. 

1. (D3 − 6D2 + 11d − 6)y = e−2xe−3x Ans. y = c1ex + c2e2x + c3e3x −  1  (2e−2x + e−3x ) 

d 2 y 
2. 

d x2
 

d y 
+ 4 

d x
 

 

+ 5y = −2 cosh(x) Ans. y = e−2x [c1 

 

cos(x) + c2 

120 

sin(x)] 

 
x 

− 
10 

− 

 

e−x 
 

2 
3. (D + 1)(D − 3)2 y = e3x + e5x Ans. y = (c1 + c2x)e3x + c3e−x + 1 x2e3x +  1  e5x 

2 ¸
 8  24 

4. 
d x 

+ 2 
dx 

+ 3x = sin(t ) Ans. y = e−t 
£

c1 cos
¡  

2t 
¢

c2 sin
¡¸

2t 
¢¤ 

+ 1 [sin(t ) − cos(t )] 

dt 2 dt 
d 2 y d y 

4 

x 3x 1 

5. 
d x2 

− 4 
d x 

+ 3y = cos(5x + 3) Ans. y = c1e + c2e − 442 [10 sin(5x + 3) + 11 cos(5x + 3)] 

6. (D2 + 3D + 2)y = sin(3x) cos(2x) Ans. y = c1e−x + c2e−2x +  1  [10 cos(5x) − 11 sin(5x)] 

3 2 
+ 

20 
[sin(x) + 2 cos(x)] 

7. 
d y 

+ 2 
d y 

+ 
d y 

= e−x + sin(2x) Ans. y = c + (c + c x)e−x − x
2 

e−x +  3  cos(2x) −  2  sin(2x) 

d x3 d x2 d x 
1 2 3 2 50 25 

 

Case : III When X = xm. 

Here P. I. x [ f (D)]− x  . 
f (D) 

Expand [ f (D)]−1 in ascending power of D as far as the term in Dm and operate on xm by term. 

Since the (m + 1)th and higher derivatives of xm are zero, we need not consider terms beyond Dm. 

Note: Use the following formulae to expand [ f (D)]−1. 

(1) (1 − D)−1 = 1 + D + D2 + D3 + · · · 

(2) (1 − D)−2 = 1 + 2D + 3D2 + 4D3 + · · · + (1 + m)Dm + · · · 

(3) (1 − D)− = 1 + 3D + 6D + 10D + · · · + mD + · · · 

(4) (1 + D)−1 = 1 − D + D2 − D3 + D4 − D5 + · · · 

Case : IV When X = eaxV,  where V is a function of x. 
  1   

eaxV = eax 
 1  

V 

f (D) f (D + a) 

Case : V When X is any other function of x. 

Here P. I. 
 1  

X . 
f (D) 
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− 

D − a 

D 

D 

D 

= + + 

− − 

 

 

 

If f (D) = (D − m1)(D − m2)...(D − mn), resolving into partial fractions, 

1 A1 A2 An 

f (D) 
= 

D − m1 
+ 

D − m2 
+ · · · + 

D − mn 
.
 

1 
∴ P. I. = 

f (D) 
X . 

= 

·
  A1  

+ 
  A2  

+ · · · + 
  An  

¸ 

X . 

D m1 D m2 D mn 
1 1 1 

= A1 
D − m1 

X + A2 
D − m2 

X + · · · + An 
D − mn 

X . 

= A1em1 x 

, 

Xe−m1 x dx + A2em2 x 

, 

Xe−m2 x dx + · · · + Anemn x 

, 

Xe−mn x dx. 
µ

∵ 
 1   

X = eax 

, 

Xe−ax dx.

¶

 

This method is a general on and therefor can be applicable to obtain a particular integral in any given 

case. 

d 2 y d y 2 

Example 4.10. Solve 
dx2  

+ 
dx 

= x + 2x + 4 

Sol. Here given differential equation is non-homogeneous. So general solution is y = C. F. + P. I. 
d 2 y d y 2 

To find C. F. consider the equation 
d x2 

+ 
d x 

= 0. Then A.E.  D 

0, −1. 

+ D = 0. ∴ D(D + 1) = 0 ⇒ D = 

∴ C .F. = c1 + c2e−x 

 

And P. I. 
 1  

(x2 2x 4) 

D(D + 1) 

= 
 1 

(D + 1)−1(x2 + 2x + 4) 

= 
 1 ¡

1 − D + D2 − D3 + D4 − · · · 
¢

(x2 + 2x + 4) 

= 

µ 
 1 

− 1 + D − D2 + D3 − · · · 

¶

(x2 + 2x + 4) 

1 2 

= 
D 

(x 

 

+ 2x + 4) − (x2 

 

+ 2x + 4) + D(x2 

 

+ 2x + 4) − D 

 
2(x2 

 

+ 2x + 4) + D 

 
3(x2 

 

+ 2x + 4) + · · · 

= 

,

(x2 + 2x + 4)dx − (x2 + 2x + 4) + (2x + 2 + 0) − (2 + 0 + 0) + 0 

x3 
2
 

= 
3 

+ x 

x3 

+ 4x − x2 − 2x − 4 + 2x + 2 − 2 

= 
3 

+ 4x − 4 

Thus G. S. = C. F. + P. I. ⇒ y = c1 + c2e 
x3 

+ 
3 

+ 4x − 4 −x 
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D2 − 4D + 3 

 

 

 

Example 4.11. Find P. I. of (D2 − 4D + 3)y = e4x sin(2x) 

 

 

 

 
 

 

Sol. 
 
 

 

P. I. = 
 1  

e4x sin(2x) 

4x 1 4x 

= e 
(D + 4)2 − 4(D + 4) + 3 

e
 

e4x 
1 

sin(2x) 

D2 + 4D + 3 

e4x  
1 

sin(2x) 
(−4) + 4D + 3 

e4x  
1 

sin(2x) 
4D − 1 

sin(2x) 

e4x 
 4D + 1  

sin(2x) 
16D2 − 1 

e4x 
4D + 1 

sin(2x) 

4x
−65 

e 
= − 

65 
[4D sin(2x) + sin(2x)] 

e4x 

= − 
65 

[8 cos(2x) + sin(2x)] 

 
 

 

 

 

 

Example 4.12. Solve (D2 + 16)y = tan(4x) 

 

 

 

 

 

 

Sol. Here given differential equation is non-homogeneous. So general solution is y = C. F. + P. I. 

To find C. F. consider the equation (D2 + 16)y = 0. Then A.E. D2 + 16 = 0  ∴ D = ± 4i 

= 

= 

= 

= 

= 
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D2 + 16 

8i 

8i 

8i 

1 1 1 

T husG. S. =C. F. + P. I. ⇒ y = c1 cos(4x) + c2 sin(4x) + 
8i

 

 

 

∴ C. F. = c1 cos(4x) + c2 sin(4x) 

And P. I. = 
 1  

tan(4x) 

= 
 1  

·
  1  

− 
  1  

¸

tan(4x) 

8i 
·
D − 4i D + 4i 

¸
 

= 
8i 

D − 4i 
tan(4x) − 

D + 4i 
tan(4x) 

= 
 1  

·

e4i x 

, 

e−4i x tan(4x)dx − e−4i x 

, 

e4i x tan(4x)dx

¸ µ

∵ 
 1   

X = eax 

, 

Xe−axdx.

¶

 
8i 

· , , D − a 
¸
 

1  
= 

8i e4ix 
[cos(4x) − i sin(4x)] tan(4x)dx − e−4i x [cos(4x) + i sin(4x)] tan(4x)dx 

= 
 1  

·

e4i x 

,

[cos(4x) tan(4x) − i sin(4x) tan(4x)]dx 

−e−4i x 

,

[cos(4x) tan(4x) + i sin(4x) tan(4x)]dx

¸

 

= 
 1  

·

e4i x 

,

[sin(4x) − i sin2 (4x) cos(4x)]dx 

−e−4i x 

,

[sin(4x) + i sin2 (4x) cos(4x)]dx

¸

 

= 
 1  

·

e4i x 

µ, 

sin(4x)dx − i 

, 

sin2 (4x) cos(4x)dx

¶

 

−e−4i x 

µ, 

sin(4x)dx + i 

, 

sin2 (4x) cos(4x)dx

¶¸

 

1  
·
 4ix 

µ
 cos(4x) sin3 (4x) 

¶
 

= 
8i  

e − 
4 

+ i 

−4ix 

µ
 

 
 

12 

cos(4x) 

 

sin3 (4x) 
¶¸ µ , 

n ′ f n+1(x) 
¶
 

−e − 4 
− i 

12 ∵ f  (x) f (x)dx = 
 

 

n + 1 

1  
·
sin3 (4x) ³  

4ix −4ix 
´
 cos(4x) ³  4ix 4ix 

´¸
 

= 
8i 12 

e + e − 
4 

e − e 

1  
·
sin3 (4x) ³ 

 
 

 
 

 
 

 
4ix 

 

 

−4ix 
´
 

 

cos(4x) ³ 
 

 
 

 
 

 
4ix 

 

4ix 
´¸

 

 

 

Exercise-III 
 

 

Que : 1 Find (i ) 
  1   

x3 and (i i ) 
 1  

x2e3x 

³
Ans.(i ) − 1 

³
x3 

 

 

 

 

 

 
3x2 3x 

 

 

 
3 
´ 

(i i ) e
3x ¡

x2 − 2x + 3 
¢´

 

D − 2 D2 − 2D + 1 
2 

+ 
2 

+ 
2 

+ 
4 4 2 

Que : 2 Solve the following differential equation. 

12 4 
e + e − e − e 
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− − = = 1 + 2 

3x 

2x 

x 

dt 

12 3 9 

 1  
18 8 6 

12 2 

d 2 y d y 2 x 2 

1. 
d x2 

+ 2 
d x 

+ y = 2x + x Ans. y = (c1 + c2x)e− + x − 2x + 2 

2. (D2 − 6D + 9)y = e3x (1 + x) Ans. y = (c + c x)e3x + e3x 

³ 
x2 

+ x
3 
´
 

d 2 y 2 

3. 
d x2 

− y = x 

1 

− 1 Ans. y = c1ex 

2 

+ c2e−x 

2 6 

− 1 − x2 
2x x 

4. (6D2 D 2)y xe−x Ans. y c e 3 c e− 2 

5. (D2 − 2D + 3)y = cos(x) + x2 Ans. y = ex 
£

c1 cos
¡¸

2x
¢ 

+ c2 sin
¡¸

2x
¢¤

 

+  1  
£

2 cos(x) − 3 sin(x) + 4x2 + 16x + 8 
¤
 

6. (D3 − D)y = 2x + 1 + 4 cos(x) + 2ex Ans. y = c1 + c2ex + c3e−x + xex − (x2 + x) − 2 sin(x) 

7. (D4 − 1)y = ex cos(x) Ans. y = c1ex + c2e−x + c3 cos(x) + c4 sin(x) − 
ex 

5 
cos(x) 

d 2 y d y 3x x 2x 
e3x 

3 1 

8. 
d x2 

− 3 
d x 

+ 2y = xe + sin(2x) Ans. y = c1e + c2e + 
4 

(2x − 3) + 
20 

cos(2x) − 
20 

sin(2x) 

d 2 y 2 3x x ¡¸   ¢ ¡¸   ¢ e ¡ 2 12x  50  
¢ 

9. 
d x2 

+ 2y = x e + e cos(2x) Ans. y = c1 cos 2x + c2 sin 

ex 

2x + 
11

 x − 
11 

+ 
121 

+ 
17 

(4 sin(x) − cos(x)) 

10. (D3 + 2D2 + D)y = x2e2x + sin2 (x) Ans. y = c1 + (c2 + c3x)e−x + 
e   ¡

x2 − 7x + 11 
¢
 

+ 100 (3 sin(2x) + 4 cos(2x)) 

11. (D2 − 1)y = x sin(x) + (1 + x2)ex Ans. y = c1ex + c2e−x + 
xe  ¡

2x2 − 3x + 9
¢ 

− 1 (x sin(x) + cos(x)) 

 

 
Now we shall study two such forms of linear differential equation with variable co-efficient which can 

be reduced to linear differential equations with constat co-efficient by suitable substitutions. 

 

4.5 Cauchy's homogenous linear equation 
 
An equation of the form 

n d n y n−1 d n−1 y d y 

x  
d xn 

+ k1x 
d xn−1 

+ · · · + kn−1x 
d x 

+ kn y = X (4.9) 

where k′s are constants and X is a function of x, is called Cauchy’s1 homogeneous linear equation. 

Such equation can be reduced to linear differential equation with constant coefficients, by putting 

x = et or t = log x. Then if D = 
 d 

 

 
dy dy  dt dy  1 dy 

dx 
= 

dt 
· 

dx 
= 

dt 
· 

x 
i .e. x 

dx 
= D y. 

1A French mathematician Augustin-Louis Cauchy (1789-1857) who is considered as the father of modern 

analysis and creator of complex analysis. He published nearly 800 reserch paper of basic importance. Cauchy 

is also well known for his contribution to differential equation, in finite series, optics and elasticity. 
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(D − 1)2 

   

 

 

d 2 y  d  
µ 

1 dy 
¶
  1 dy 1 d  

µ 
dy 

¶ 
dt  1 dy 1 d 2 y dt  1  

µ 
d 2 y dy 

¶
 

d x2 
= 

dx x dt 
= − 

x2 dt 
+ 

x dt  dt dx 
= − 

x2 dt 
+ 

x dt 2 dx 
= 

x2 dt 2 
− 

dt  
.
 

 

i .e. x 
2 d 2 y 

d x2 
= D(D − 1)y.  Similarly, x 

3 d 3 y 

d x3 
= D(D − 1)(D − 2)y and so on. 

After making these substitution in (4.9), that results a linear equation with constat coefficients, which 

can be solved as before. 

2 d 2 y d y 
Example 4.13. Solve  x 

dx2  
− x 

dx 
+ y = log x 

Sol. This is a Cauchy’s homogeneous linear equation. 

t dy 2 d 2 y d 
Put x = e , i.e. t = log x, so that x 

dx 
= D y, x 

Then given equation becomes 
d x2 

= D(D − 1)y , where D = 
dt

 

[D(D − 1) − D + 1]y = t or (D − 1)2 y = t (4.10) 

which is a linear equation with constant coefficients. 

Its A.E. is (D − 1)2 = 0 whence D = 1, 1. 

∴ C. F. = (c1 + c2t )et . 

And P. I. = 
 1  

t = (1 − D)−2t = (1 + 2D + 3D2 + · · · )t = t + 2. 

Hence the solution of (4.10) is y = (c1 + c2t )et + t + 2. 

Put t = log x or et = x, we get 

y = (c1 + c2 log x)x + log x + 2 as the required solution of given equation. 

2 d 2 y d y x 

Example 4.14. Solve  x 
dx2  

+ 4x 
dx 

+ 2y = e 

Sol. This is a Cauchy’s homogeneous linear equation. 

t dy 2 d 2 y d 
Put x = e , i.e. t = log x, so that x 

dx 
= D y, x 

Then given equation becomes 
d x2 

= D(D − 1)y , where D = 
dt

 

[D(D − 1) + 4D + 2]y = ee
t  

or (D2 + 3D + 2)y = ee
t 

(4.11) 

which is a linear equation with constant coefficients. 

Its A.E. is D2 + 3D + 2 = 0 whence D = −1, −2. 

∴ C. F. = c1e−t + c2e−2t = c1x−1 + c2x−2. 

And P. I. = 
 1  

ee
t 

= 
 1  

ee
t 

= 

·
 1  

− 
 1  

¸ 

ee
t

 

(D2 + 3D + 2) (D + 1)(D + 2) (D + 1) (D + 2) 

= 

·
 1  

eet 

− 
 1  

eet 

¸
 

·
(D + 1) (D + 2) 

,  ̧ µ , ¶
 

= e−t 

,
 et ee

t 

dt 

 

− e−2t 

 

e2t 
ee

t 

dt 
1 

∵ 
D − a 

X = eax Xe−axdx. 
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2 

 

 

 

= x−1 

, 

exdx − x−2 

, 

ex xdx 
¡
∵ et = x

¢
 

= x−1ex − x−2(xex − ex ) 

= x−2ex 

 

Hence the required solution of y = c1x−1 + c2x−2 + x−2ex . 

 

4.6 Legendre's linear equation 
 

An equation of the form 

 
n d n y 

 

 

n−1 d 
n−1 

y d y 

(ax + b)  
d xn 

+ k1(ax + b) 
d xn−1 

+ · · · + kn−1(ax + b) 
d x 

+ kn y = X (4.12) 

where k′s are constants and X is a function of x, is called Legendre’s 2 homogeneous linear equation. 

Such equation can be reduced to linear differential equation with constant coefficients, by putting 

 

ax + b = et or t = log(ax + b). 

Then if D = 
 d  

, 
dy 

= 
dy 

· 
dt 

= 
dy 

· 
  a  

i .e. (ax+b) 
dy 

= aD y. 

dt dx dt dx dt ax + b dx 

d 2 y  d  
µ 

  a dy 
¶ 

−a dy  a d  
µ 

dy 
¶ 

dt a2 
µ 

d 2 y dy 
¶
 

d x2 
= 

dx 

2 d 2 y 

ax + b dt 

2 

= 
(ax + b)2 dt 

+ 
(ax + b) dt  dt 

3 d 3 y 3 

dx 
= 

(ax + b)2  dt 2 
− 

dt  
.
 

i .e. (ax +b) 
d x2 

= a D(D −1)y. Similarly, (ax +b) 
d x3 

= a D(D −1)(D −2)y and so on. 

After making these substitution in (4.12), that results a linear equation with constat coefficients. 

 

2 d 2 y d y 
Example 4.15. Solve (1 + x) 

dx2  
+ (1 + x) 

dx 
+ y = 2 sin(log(1 + x)) 

Sol. This is a Legendre’s homogeneous linear equation. 

Put 1 + x = et i.e. t = log(1 + x), 
d y 2 d 2 y d 

so that  (1 + x) 
d x 

= D y and (1 + x) 

Then given equation becomes 
d x2 

= D(D − 1)y , where D = 
dt 

. 

D(D − 1)y + D y + y = 2 sin(t ). ⇒ (D2 + 1)y = 2 sin(t ) (4.13) 

which is linear equation with constant coefficients. 

Its A.E. is D2 + 1 = 0 whence D = ±i . ∴ C. F. = c1 cos(t ) + c2 sin(t ). 

And P. I. = 2 
  1  

sin(t ) = 2t 
 1  

sin(t ) = t 
,
sin(t )dt = −t cos(t ). 

D2 + 1 2D 
 

2An French mathematician Adrien Marie Legender (1752-1833) who made important contribution to num- 

ber theory, special functions and calculus of variation. 
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¡ ¢ ¡ ¢ 

2 d y 

d x 

 1  

 

 

 

Hence the solution of (4.13) is y = c1 cos(t ) + c2 sin(t ) − t cos(t ). 

Put t = log(1 + x), we get 

y = c1 cos log(1 + x) + c2 sin log(1 + x) − log(1 + x) cos(log(1 + x)) as the required solution of 

given equation. 

 

Exercise-IV 
 
Que :1 Solve the following differential equation. 

2 
d 2 y d y 

3 2 3 

1. x 
d x2 

− 2x 
d x 

+ 2y = x Ans . c1x + c2x + 0.5x 

2. x 
3 d 3 y 

d x3 
+ 2x 

2 

2 
+ 2y = 10(x + x−1) Ans . y = c1x−1 + x(c2 cos(log x) + c3 sin(log x)) 

+5x + 2x−1 log x 

2 d 2 y d y 4 4 1 4 

3. x 
d x2 

− 2x 
d x 

− 4y = x Ans . y = c1x + c2x− + (0.2)x log x 

2 d 2 y d y 2 2 1 1  2 2 

4. x 
d x2 

− 3x 
d x 

+ 4y = (1 + x) 
2 

Ans . y = (c1 + c2 log x)x + 4 + 2x + 2 x (log x) 

5. x 
d y 

− 2x−1 y = x + x−2 Ans . y = c1x2 + c2x−1 + 1 
¡
x2 − 1 

¢
log x 

d x2 3 x 

d 2 y d y 
1   −2 3 

6. 
d x2 

x− = 12x log x Ans . y = c1 log x + c2 + 2(log x) 

2 d 2 y d y 2 2 
h ¸

2 ¸
2
i 

7. (5 + 2x) 
d x2 

− 6(5 + 2x) 
d x 

+ 8y = 2(2x + 5) Ans . y = (5 + 2x) c1(5 + 2x) 
2 

+ c2(5 + 2x) 

2 
−(5 + 2x) 

8. (2x + 3)2 
d y 

− (2x + 3) 
d y 

− 12y = 6x Ans . y = c1(2x + 3)a + c2(2x + 3)b −  3  (2x + 3) 

d x2 

2 d 2 y 

d x 

d + y 

  ¸  
14 

where a, b = 3±
4 

57
 

9. (1 + x) 
d x2 

+ (1 + x) 
d x+ 4 = 4 cos(log(1 + x)) Ans . y = c1 cos(t ) + c2 sin(t ) + 2t sin(t ) 

2 
where t = log(1 + x) 

10. (3x + 2)2 
d y 

+ 3(3x + 2) 
d y 

− 36y = 3x2 + 4x + 1 Ans . y = c1(3x + 2)2 + c2(3x + 2)−2 

d x2 d x 
+ 

108 
[(3x + 2)2 log(3x + 2)] 

Definition 4.16. Polar Co-ordinates: Angle θ in polar co-ordinate system is directed angle, meaning 

angle can be positive or negative. Anticlockwise means positive, clockwise means negative. 

In polar co-ordinate system, if r is constant then a circle can be drawn and if θ is constant then a ray is 

obtained. 

 

P (r, θ) = P (−r,(2k + 1)πθ) 

= P (r,(2kπ)θ) 

Advantage: Lesser things are required compared to cartesian co-ordinate system. 

Disadvantage: In this system, same point has many co-ordinates. 

d x 
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4 

6 

3 

4 

2 

= 

 

 

 

 
Definition 4.17.  Polar Co-ordinates in R2 

Let O be a fixed point in the plane, let O
−−→

X be a fixed ray in the plane. Then, for every point P in the 

plane, 

 

i one can find r ≥ 0 such that OP = r and 

ii one can find θ ∈ [0, 2n] such that m∠POX = θ. 

Here the ordered pair (r, θ) is called the polar co-ordinate of the point P. O and O
−−→

X are called the pole 

and the initial line respectively. 

If (r, θ) is a polar co-ordinate of the point P, then (r, 2kπ + θ), (−r, π + θ), (−r,(2k + 1)πθ) are also polar 

co-ordinates of the same point P for ∀k ∈ Z. 

r is called the radius vector and θ is called the angular co-ordinates of P. 

 

 

4.7 Relation between Cartesian and Polar Co-ordinates 

Let P (x, y ) be a point in the cartesian co-ordinate plane. Take O as the pole and O
−−→

X as the initial line. 

Let P (r, θ) be the polar co-ordinate of P . 

 

OP = |r | 

=⇒ OP 2 = r 
2 2 2 

=⇒ (x − O) + (y − O) = r 
 

 

Also, from the figure, 

=⇒ x2 + y = r (4.14) 

 

 

m∠POM θ 
x y 

=⇒ cos θ = 
r 

and sin θ = 
r
 

=⇒ x = r cos θ and y = r sin θ (4.15) 

 

Example 4.18. Find the cartesian co-ordinates of the following polar points. Also plot the points 

1 (
¸

2, π ) 

 

2 (2, π ) 

 

3 (2, −π ) 

4 (−2, −π ) 

 

Sol. 

2 

2 
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4 

= = 

6 

6 

= = 

3 

3 

4 

4 

4 

4 

6 

6 

 ̧

 
 

 

1 Here A(
¸

2, π ) 
4 

∴ r = 
¸

2, θ = π Now x r cos θ, y r sin θ 
∴ x = 

¸
2 cos π = 

¸
2( ̧ 1 ) and y = 

¸
2 sin π = 

¸
2( ̧ 1 ). 

4 2 4 2 

∴ (x, y ) = (1, 1) 

2 Here A(2, π ) 

∴ r = 2, θ = π 

Now x r cos θ, y r sin θ 

∴ x = 2 cos π = 2( 
¸

3 ) and y = 2 sin π = 2( 1 ). 
6 2 6 2 

∴ (x, y ) = (  3, 1). 

3 Here A(2, −π ) 

∴ r = 2, θ = −π 

Now x = r cos θ, y = r sin θ 
¸
 

 

∴ x = 2 cos −π = 2( 1 ) and y = 2 sin −π = 2(−   3 ). 
∴ (x, y ) 3 ¸ 2 3 2 

= (1, − 3). 

4 Here A(−2, −π ) 

∴ r = −2, θ = −π 

Now x = r cos θ, y = r sin θ 
∴ x = −2 cos −π = −2( ̧ 1 ) and y = −2 sin −π = −2(− ̧ 1 ). 

¸   ̧ 2 4 2 

∴ (x, y ) = (− 2,  2). 

Example 4.19.  Find polar co-ordinates of following cartesian points. 
 

 

 

 

 

 

 

 

 

Sol. 

1 (1, 1) 

2 (
¸

3, 1) 

3 (−
¸

3, −1) 

4 (−2, −2) 

 

1 Here (x, y ) = (1, 1) =⇒ x = 1, y = 1. Now x2 + y 2 = r 2 =⇒ r 2 = 1 + 1 =⇒ r = 
¸

2. 
Now cos θ = x and sin θ = y . 

1 
r 

1 
r 

π 
 

∴ cos θ = ¸
2 

and sin θ = ¸
2 
. Hence θ = 

4 
. 

∴ (r, θ) = (
¸

2, π ). 

2 Here (x, y ) = (
¸

3, 1) =⇒ x = 
¸

3, y = 1. Now x2 + y 2 = r 2 =⇒ r 2 = 3 + 1 =⇒ r = 2. 
Now cos θ = x and sin θ = y . 

¸
3 

r 
1 

r 
∴ cos θ = 

2 
and sin θ = 

2 
. Hence θ = π . 

∴ (r, θ) = (2, π ). 
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6 

2, 5π ). 

 ̄  ̄

2 

1 2 1 2 

1 2 

1 2 

 

 

 

3 Here (x, y ) = (−
¸

3, −1) =⇒ x = −
¸

3, y = −1. Now x2 + y 2 = r 2 =⇒ r 2 = 3 + 1 =⇒ r = 2. 
Now cos θ = x and sin θ = y . 

¸r r 
∴ cos θ = − 3 and sin θ = − 1 . Hence θ = 7π . 

2 2 6 

∴ (r, θ) = (2, 7π ). 

4 Here (x, y ) = (−2, −2) =⇒ x = −2, y = −2. Now x2 + y 2 = r 2 =⇒ r 2 = 4 + 4 =⇒ r = 2
¸

2. 
Now cos θ = x and sin θ = y . 

r 
∴ cos θ = − ¸2 

r 
and sin θ = − ¸2 . ∴ cos θ = − ̧ 1

 and ∴ sin θ = − ̧ 1 . Hence θ = 5π . 

∴ (r, θ) = (2 

    

2̧  2    2 2 2 2 4 

4 

Theorem 4.20. Find distance formula in polar co-ordinate system in R2. 

Proof. Let A(r1, θ1) and (r2, θ2) are two points in polar co-ordinate systems. 

The cartesian co-ordinates of A and B are A(r1 cos θ1, r1 sin θ1), B (r2 cos θ2, r2 sin θ2). Now 

AB = 

q

(r1 cos θ1 − r2 cos θ2)2 + (r1 sin θ1 − r2 sin θ2)2 

= 

q

r 2 cos2 θ1 − 2r1r2 cos θ1 cos θ2 + r 2 cos2 θ2 + r 2 sin2 θ1 + r 2 sin2 θ2 − 2r1r2 sin θ1 sin θ2 

= 

q

r 2 + r 2 − 2r1r2(cos θ1 cos θ2 + sin θ1 sin θ2) 

AB = 

q

r 2 + r 2 − 2r1r2 cos(θ1 − θ2) 

 

 

Theorem 4.21. Obtain the formula for the area of ΔABC in polar co-ordinate system. 

 

Proof. Let A(r1, θ1), B (r2, θ2) and C (r3, θ3) be the vertices of the ΔABC . Hence the cartesian co- 
ordinate A, B and C are A(r1 cos θ1, r1 sin θ1), B (r2 cos θ2, r2 sin θ2) and C (r3 cos θ3, r3 sin θ3). 

 

 

ΔABC = 1 r2 cos θ2 r2 sin θ2 1 
¯ r3 cos θ3 r3 sin θ3 1 ¯ 

 

 

Theorem 4.22. Obtain the equation of line passing through A(r / − 1, θ1) and B (r2, θ2). 

 
Proof. The cartesian co-ordinates of A and B are A(r1 cos θ1, r1 sin θ1), B (r2 cos θ2, r2 sin θ2). The carte- 

sian equation of 
←
A
→
B is 

x y 1 
¯ 

x1 y1 1 
¯ 

= 0 
¯ x2 y2 1 ¯ 

r1 cos θ1 r1 sin θ1 1 
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 ̄  ̄

= 

2 

2 2 

2 3 

 
 

 

In polar co-ordinates, the equation of 
←
A
→
B is, 

 
r cos θ r sin θ 1 

 ̄  ̄
r1 cos θ1 r1 sin θ1 1 = 0 

r2 cos θ2 r2 sin θ2 1 

=⇒ (r1 cos θ1r2 sin θ2 − r1r2 cos θ2 sin θ1) − (r cos θr2 sin θ2 − r r2 cos θ2 sin θ) + (r r1 cos θ sin θ1 − r r1 cos θ1 sin θ) = 0 

=⇒ r1r2 sin(θ2 − θ1) − r r2 sin(θ2 − θ) + r r1 sin(θ1 − θ) = 0 

=⇒ 
sin(θ2 − θ1) 

= 
sin(θ2 − θ) 

− 
sin(θ1 − θ) 

r r1 r2 

=⇒ 
sin(θ1 − θ2) 

= 
sin(θ − θ2) 

− 
sin(θ − θ1) 

r r1 r2 

is the polar equation of a line passing through A(r1, θ1) and B (r2, θ2). 

 

Theorem 4.23. Obtain the polar equation of a line in p − α form. 

 

Proof. Let p be the perpendicular distance from the pole to a line L in the polar plane. Draw OM ⊥ 

L, M ∈ L. Let m∠MOX = α. The polar co-ordinates of M is M (p, α). 

Let P (r1θ) be a point on the line L other than M . 

∴ OP distance is r and m∠POX = θ. 

∴ m∠POM = θ − α or α − θ = ±θ − α = |θ − α|. From the right-angled ΔPOM , 

cos(∠POM ) 
OM

 
OP 

=⇒ OM = OP cos(±θ − α) 

=⇒ p = r cos(θ − α) (∵ cos θ = cos(−θ)) 

which is the required equation. 

4.8 Deductions: 

1 If O ∈ L, then P = O. Hence r cos(θ − α) = 0. That is if pole is on line L, then r cos(θ − α) = 0 is 
the equation of line passing through pole. 

2 If L ⊥ O
←→

X , then α = 0. Hence p = r cos(θ − 0). 

∴ p = r cos θ. 

3 If L ∥ O
←→

X , then α = π . Hence p = r cos(θ − π ) = r sin θ. Equation of line will be p = r sin θ. 

4 If L = O
←→

X , then p = 0 and α = π . Hence the equation of line will be r sin θ = 0. 

 

Example 4.24. Prove that the points (6, 0),(3, pi ) and (−3, 7π ) are non-collinear. 
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¯ 

3 

¯ 

¯ 

3 3 

¯ 
2 

−3( 
2 

)  −3( 
2̧

3
 

2 

= ̄  
¸

3
 

2 1  ̄

¯ 

¯ 
3 

¸
3

 

¯ 

¯ 

 

 

 

Sol.  The polar equation of a line passing through (6, 0),(3, π ) and (−3, 7π ) is, 
 

¯ r cos θ r sin θ 1  ̄ 6(1) 6(0) 1 
1 

¸
3 ) 1 

¯ r1 cos θ1 r1 sin θ1 1 ¯ = ̄  3( ) 3( 

6 0 1 
¸  

= 2 

¯ − 
2
 

3 
2 

−3 
2 

1  ̄

6 0 1 
 

0 0 2 
¸

3
 

 

 

 

 

∴ the given points are non-collinear 

= 2(18 
2 

) 

= 18
¸

3 

/= 0 

Example 4.25. Obtain the polar co-ordinates of the foot of 

¯ 

¯ 

1 

¯ r 1  ̄
)  1  ̄

3 
2 

3 

2 cos θ2 r 2 sin θ2 1 

3 
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