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Chapter 1

Introduction to Di erential
Equations

The following topics are to be covered from differential equation of first order and first degree. Topics
included here are from unit-3 of the syllabus according to choice base credit system effective from
June-2010. The course code of the M-101 and title of the paper is Geometry and calculus.
Differential Equations of First Order and First Degree: Definition and method of solving of homoge-
neous differential equations, Definition and method of solving of Linear differential equations of first
order and first degree, Definition and method of solving of Bernoulli’s differential equation and Def-
inition and methods of solving of Exact differential equation. Differential Equations of First order
and Higher Degree: Differential equations of first order and first degree solvable for X, solvable fory,
solvable for p. Clairaut’s form of differential equation and Lagrange’s form of differential equations.

Definition 1.1. Differential equation is an equation which involves differentials or differential coeffi-
cients. For example,

1. ¥ =x2+2y.
2. rz?fr%z a. Where a is constant.
3. L4S 4 RY% + 1q =E sinwt
Definition 1.2. A differential equation is said to be linear in dependent variable if,
1. dependent variable and all its derivatives present are in first degree.
2. dependent variable and its derivatives are not multiplies together.

3. dependent variable and its derivatives are not multiplied with itself.
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4. no transcedental functions of dependent variable and/or its derivative occur.

Remark 1.3. A differential equation which is not linear is said to be Non-linear. It is nice exercise to
find out some examples of linear and non linear differential equation. You can check from examples
given in the exercises. (do itl)

Definition 1.4. An ordinary differential equation (O. D. E.) is a differential equation which involves
only ordinary derivatives.

Definition 1.5. A partial differential equation (P. D. E) is a differential equation which involves only
partial derivatives. For example,

3 .
U _ 2 2
1. ‘at_—C %;(IEL‘FayZ.

au 282
2. § =5

Definition 1.6. The order of the differential equation is defined to as the order of the highest derivative
involved in the differential equation. Also, the degree of the differential equation is defined as the
degree of the highest derivative involved in the differential equation, where all derivatives occurring
therein are free from radicals and fraction.

Examples 1.7. (1) Decide the order and degree of the differential equation given by

2d?y  dy
X WﬁLxdx + 3dx =sinx.
Solution: The given differential equation is not free from integration sign. So, to decide order of a
differential equation we have to differentiate with respect to x on both sides and make it free from
integration.
2d%  d?y dy

== X ——= +3X—+ —+ 3 = COsSX.
dx3 dx? = dx

Here, order of the highest derivative involved is three. Therefore, order of differential equation is 3, and
degr\ge of higf@st derivative is 1. Thus, order is 3 and degree is 1.
2 “ ()= 7+3(

Sollution: To obtain degree of differential equation we have make differential equation free from radi-
cals.

q q

S = (T3

(") =7 +3()
udzyﬂs . HdJLﬂ,Z
dx_2 =7+3 dx

Which shows that order of the given differential equation is 2 and degree is 5.



Definition 1.8. 1. A solution or integral or primitive of a differential equation is a relation
between the variables which does not involve any derivatives and also satisfies given differen-

tial equation. For example, y = c1cosx + c2sinx, where ¢, and ¢, are arbitrary constants, is a
2
solution of the differential equation given by &=y = 0.
2. A solution of a differential equation in which the number of arbitrary constants is equal to the or-

der of the differential equation is called the general solution or complete integral or complete
primitive.

3. The solution obtained from the general solution by giving particular values to the arbitrary con-
stants is called particular solution. For example, y = x* + 2 is a particular solution of the differ-
ential equation 4 = 4x%, where ¢ = 2.

4. A solution which can not be obtained from a general solution is called singular solution . For
5

2
example,y = x#% —2 % " The general solution is given by y = cx + 2¢2, where c is an arbitrary

constant. Also, 8y = x? is a singular solution which can not be obtained by putting any value of
C.

Examples 1.9. (1) Find the differential equation from y = ax — a2, where a is an arbitrary constant.

Solution: Differentiating y = ax — a? with respect to x we get {‘GVX = a. Substituting we get desired differ-
3 4 3 -

ential equationy = % x— W 2.

(2)Form the differential equation fromy = Ae® + Be®*; where A and B are arbitrary constants.

Solution: Here, two arbitrary constants A and B are present, therefore to eliminate them we have to

differentiate two times.

d
&Y —2Ae* | 5Be®*. (1.1)
dx
again by differentiating with respect to x we get,
d?y 2
S =4Ae  +25Be (1.2)
dx?

Multiply equation y = Ae® + Be** by —2 and adding in (4.2) we get

d 1d 2°
&Y —2y =3Be™ == Be> ="~ & _ Ty (1.3)

dx 3 dx 3
Now multiply (4.1) by —5 and adding in (4.2) we get, Ae® = 5dy fﬂ Thus by substituting values of
6dx  6dx?
constants we get

d?y _dy
T 7&4— 10y =0
Which is required differential equation.
Exercise-I

Que-1. Find the differential equation from the following equations.



1. xy = ce* + be—* + x2, where b and c are arbitrary constants.
2. ax? +by? =1, where a and b are arbitrary constants.
3. y = ax + bx?, where a and b are arbitrary constants.

4. r? = a%c0s20, where a is an arbitrary constant.

Que-2. Find out order and degree of the following differential equations.
2
1. X297 — x(%)3 + y = cosx.

2. % =del¥l

q——
3. (&)= 1+@)~

4. ¥ -3¢ + xdx.

Que-3. Show that y = e* is a solution of a differential equation

2d?y 2, dy
_ - _ ) 4y _0.
3x e +2(1—3x ax =

Que-4. Prove that y = 2x + 5e~* is a particular solution of a differential equation

d?y dy

(x+l)d—+x ——y

0.
x2 dx

Que-5. Which curve is represented by a differential equation

d?y
—_— = 7
Zadx2 17

4



Chapter 2

Di erential Equations of First Order
and First Degree.

In order to solve the differential equation, we need to investigate, whether the solution exists. It is not
3 >

2
always possible to find a real analytic solution of a given differential equation. For example, %% =
—5 has no solution for any real value of y. In our case we shall discuss some of the special types
of differential equations for which analytic solution exists. Only those differential equations which

belong to or can be reduced to any one of the following type can be solved by standard procedure.
These types are,

1. Differential equation in which variables are separable.
2. Homogeneous differential equations.

3. Nonhomogeneous differential equations which can be reduced to homogeneous differential
equations.

4. Linear differential equations.

5. Bernoulli’s differential equations. These are nonlinear types of differential equations which
can be reduced to linear form.

6. Exact differential equations.
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2.1 Di erential equations in which variables are sep-
arable.

The general form of this type of equation is
M (x)dx + N(y)dy =0, (2.2)

which can be solved by direct integration as M (x)dx+ N (y)dy = c, where c isan arbitrary constant.
If the differential equation is given in the form

f1()g1(y)dx + f2(x)ga(y)dy = 0, (2.2)

then we can reduce it in the form of equation (2.1) by rewriting as

f1(x) g2(y)
dx + dy =0,
B0 auy)”
provided fo(x) /=0, gi(y) /= 0. Also, if the given differential equation is in the form
dy

o f(ax + by +c¢), (2.3)

then putax + by + ¢ = u, to convert it in general form. Let us see following examples to understand
this method well.

Examples 2.1. 1. §Y =e¥% 4+ x%e-%,
Solution: The given differential equation is not in its general form. In order to solve the given
differential equation first we will convert it into general form.

d
& _e (e + x?)
dx
—= & dy = (esx +X )dx
== (esx +X )dx —e? dy =0,
which is in the general form and hence the solution can be obtained by direct integration.

== (e +x%)dx— e¥dy =c

eSx X3 eZy

== —+_—-——"=¢C
3 3 2

or 3e? =2(e¥* + x%) + .

Which is a general solution of the given differential equation and ¢’ is an arbitrary constant.
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2. Obtain particular solution of 9% = (4x +y + 1)2, where y(0) = 1

Solution: The given differential equation is not of the form of separable variable. Hence, to con-

vert it into separable variable formwe put4x +y+1=tand & =4+ % == dy = g —4. Put
dx dx dx dx

these values in equation we get

dt 2
——4=t
dx
dt
=dx.
t2+4
> dt » i i
= dx 4c, where c is an arbitrary constant.
t2+4
1 t
SoTtant T =x+¢
2 2
1 dx+y+1
. T tan-?! =X+cC
2 2

Putx =0andy = 1 we gettan(2c) = 1 == 2c =,Z. Thus, particular solution is given by
3

T
4x+y+1=2tan2x+z.

2.2 Homogeneous di erential equations

Definition 2.2. Let E C R? A function f : E — R is said to be homogeneous of degree n if it can be
written in the form f (x,y) = x"@(¥).

Definition 2.3. A differential equation is said to be homogeneous differential equation if it is of the
form

. -
dy y dy  Pxy)
dx =f x oTdx =Qx,y) (2.4)

Where P (X, y) and Q(X, y) are homogeneous functions of equal degree in variables x and y.

In order to solve homogeneous differential equations we need to follow mainly three following steps.

1. Puty = vx in the given differential equation and evaluate 4y.

2. Substitute the values of y and g; in main equation and bring the equation in the form of sepa-
rable variable.

3. Solve by the method of separable variable.

Examples 2.4. 1. Solve: (x2 + y?)dx — 2xydy =0
Solution: 2 2 (1 y

dy x +y  +,) (2.5)

dx 2xy &y
X
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Puty = vx we get ¥ = v + x %, Substitute these values in equation (2.5) we get,

dx dx
v+ xd—v _ 1ty
dx  2v
. xﬂ 14V
Tdx 2v
dv.  1-V
*—
dx v
2v 1
dv =" dx
1—v2 X
Which is now in the separable variable form. So, solution can be obtain by direct integration.
Integrating both side we get, - oy -
) dv = dx
1—v2 X

.. —log(1 —v?) = logx + logc where c is an arbitrary constant.
. logx + log(l — v?) = logc’,where ¢’ = ¢!
. log(x(1 — v?) = logc’
by taking exponential on both sides we get,
x(1—v?) =c,
now substitute the value of v in above equation, we get
X2 —y? =c'x

which is the general solution of the given differential equation.

2.3 Nonhomogeneous di erential equations which can
be reduced to homogeneous di erential equations.

A differential equation of the form,
gy: ax +hby +c (2.6)
dx Ix+my+n
is not homogeneous differential equation, but by making some change we can reduce it to the case of
homogeneous differential equation.
Case-1 § /=m£. In order to solve differential equation having this case, letx = x"+handy =y’ +Kk,
where h and k are constants.Also, dx = dx’ and dy = dy". Then equation (2.6) reduces to

dy’  ax +by +ah+bk+c 2.7)

dx"  IX'+my +lh+mk+n
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In this equation we select h and k by solving ah + bk + ¢ = 0 and Ih + mk 4+ n = 0 such that equation
(2.7) will turn out to homogeneous differential equation ¥ = 2'+®" where al —bm /= 0. Which is
4 4 X Ix +my

homogeneous in the variables x and y . So solve it by putting y’ = vx'.

Case-Il ~§= %. In this case al — bm = 0,and hence h and k will be indetermined or infinity. Hence
put? = = =t, where t is constant in equation (2.6) we get
| m

dy (x+my)t+c

dx (Ix+my)+n 28)

Now by substitute Ix + my = t in equation (2.8) we can solve the given differential equation. Let us
see the following examples to understand this method well.

Examples 2.5. (1)9Y = ¥+X=2_Solution: The differential equation is given by

dx y—x—4
d _ y+x—2 (2.9)
dx y—x—4
is not homogeneous differential equation. By comparing with (2.6) we geta = 1,b = 1,1 = —1,m = 1.
Here, ii = —1 /=L = 1. Hence substitute x = x' + h and y =y  +k inequation (2.9) we get,
m
%zy’+x’+(k+h—2) (2.10)

dx  y X +k-h-4

To convert equation (2.10) in homogeneous differential equation we takek +h—2=0andk —h —4 =0,

by solving we get h = —1,k = 3. Hence with these values of h and k equation (2.10) reduces to,
dy’ "X
i =7 , Which is homogeneous differential equation. (2.11)
dx'  y —x
Inordertosolveputy’ =vx and &Y =v + x’d_Vr in equation (2.11) we obtain,
dx dx
dv vx ' +Xx v+
VAX = ——=
dx vX —x v-—-1
rdv v+l 14+2v—V?
SX T = -V -
Vo1 dde,v—l v—1
—  _dv =__ , which is separable variable form
1+2v—\2 X
By integrating term by term we get,
7 v-—1 7 dx’ . .
dv = + ¢, where c is an arbitrary constant.
1+2v—\2 X
. 2= ,
Jo- =logx +c

2 142v—\Vvadv

g y' leﬂ 2
.. log 14—27—)72 +logx “=—2¢
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Jolog(x? +2x'y" —y?) —logx? + logx? = —2¢
SoXZ+ XYy —y?t=e% =(

by substituting X' = x+1andy’ =y —3, we get x2+2xy — y2—4x +8y —14 = ¢/, which is general equation
of given differential equation. (2)(x —y +2)dx + 2x —2y —4)dy =0
Solution: The differential equation is given by,

dx 2x—y)—4

dy = x—y+2 (2.12)

is not homogeneous differential equation. By comparing with (2.6) wegeta= —1,b=1,1 =2,m = -2.

Here, § = —& = 2. Therefore h and k can not be determined. Putx —y =zand1 —% = § in equation
(2.12) we get,

1-—+—7 =0
dx z-4
Sz =2
dx 2z-4
21 -4 . .
dz _ dx, which is separable variable form.
3z-2
In order to get solution integrate the terms separately we get
> 22 _4 » . .
T dz _ o dx e where c is an arbitrary constant
3z-2
’23z2-2-4 ’
. dz= dx+c
3 3z—-2
ST
1-7" dz=x+c
3 3z-2

2’ 4 :
T x—y—"log[3(x —y)—2] =3x+c’, wherec' =3c
3 3

8
SoX+2y +3 log[3(x —y) — 2] + ¢’, which is a general solution.
Exercise-II
Identify type of the following differential equations and solve them.

1. 2y % =x® +sin3x.  (Ans: 3y? = x® —cos3x +¢.)

2. 3e*tanydx + (1 —e*)sec’ydy =0. (Ans: tany = c(1—e*)3)

3. ydy p20ewd-1 =0 (Ans: 2x2 +y? +3log(x* +y2 —2) =c.)
X dx X2+y2+1

4. x*4%+ x3y +cosec(xy) = 0. (Ans: cosxy + 2e = C.
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3

5. y—x{ =ay?’+% . (Ans (x+a)(l—ay)=cy.)
. - ¢
6. x4 =y+cos? % . (Ans: tan' % = log|cx|

7. y2+x24 = xy %. (Ans:y=xlogy + cx).

N
8. y—x&= y?—x% (Ansiy+ y?—x2=c)
5 ,
9. ¥+ (Ans: tan-! = =logc (x +1)2+y2).

X—y +1 x+1
10. 9 =x&=8  (Ans: (x+y —2)(x —y)~-° =0).
dx 2x+y —3

11. (3y +2x +4)dx — (4x +6y +5)dy =0. (Ans: 21x —42y + 9log(14x + 21y + 22) = ¢).

12. (2x + 9y — 20)dx = (6x + 2y — 10)dy. (Ans: (y — 2x)? = ¢(x + 2y — 5)).

2.4 Linear di erential equations.

Definition 2.6. A differential equation of the form fd§(+ Py = Q, where P and Q are either constants

or functions of x is said to be linear differential equation of first order. For example, ngJr (sec?x)y =
sec?x tanx is linear differential equation of first order.

In order to solve the linear differential equation we use the method of separable variable. Linear
differential equation of first order is given by

dy
dx + Py = Q, where P and Q are either constants or functions of x. (2.13)

First we solve §¥ + Py = 0 by using separable variable method. For

r d 7
_;f = — Pdx + c. where c is an arbitrary constant.
logy = — Pdx +c".
"y =g~ Pixg=c
y=e" PdXC.

Now differentiate on both sides with respect to x we get,

'dedJL "Pdx _
e dx Tve P=0.

W 1
g d
Pax &L 4 py g,

€ dx
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3 . U q
d° - o
g Ve =e P L Py =0, (2.14)

Since e P9% /= 0 we multiply equation (2.13) by e P9*

H 1

e,PdX Q!_'_Py :Qe’PdX
dx

on both sides we get

d ) )
(K(ye PdX) — Qe PdX.
By integrating on both sides we have

d S
“ax(ve PdXydx = Qe P9*dx +c.

L ye PdXgx = Qe PdXdx +c, where c is an arbitrary constant. Which is the general solution of the given differentia

Remark 2.7. Here we can solve the equation by multiplying the given differential equation by g Pdx
and hence we call e an integrating factor denoted by I. F then here |.F = eP9% Therefore the
general formula for finding the solution of linear differential equation is given by

"Pdx

y(l.F) = ,Q(I F)dx +c.

Examples 2.8. (1) Solve: (x + 1) & +2y = 1.
Solution: To convert the given differential equation in general form of the linear differential equation

we divide both side by (x + 1). dy 2 1

S———y=—

dx x+1 x+1

Compare this with equation (2.13) wegetP = 2 andQ = ! .
X+1 X+1

) e
e Pdx _ e e dx — e2log(><+1) _ (X + 1)2'

Now we know the general formula for finding the solution of differential equation is

ye Pdx _ Qe PdXdX.

By substitutes values we get

71
+1)2=  _(1+x)%dx +c.
Yo+ 12= S (L)X +e
) X2
y(x + 172 = (x+1dx+c =" Fx+c
X2
y(x + 1) = 7 + x + ¢. Which is a general solution.

(2) Solve: (1 + y?)dx = (tan—ty — x)dy.
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In the given differential equation the term containing x is 1 with degree 1. Therefore the equation can
be converted to a differential equation which is linear in x given by & + Px = Q.

dx 1 tan-ly

S+ X =
dy  14+y? 142

Comparing this equation with general form we get, P = L andQ = -1y,
1+y?2 1+y?2
1

SLF e’de ede glanty.

= = 1+y =

Now put this value in general formula given by xe P9Y = 'Qe P9V dy we get

> n71
ta y tan—1

-1
xel®d Y = e Vdy +¢

1+y2
where c is an arbitrary constant. Now for right hand side integration we take tan 1y _t, 1"_3’2 _dt we
=b e =
get

Soxet Y = tetdt +c.
By integrating by parts we get

-1
xettn “Y —tet —  1etdt +c.

-1 -1
Soxe™ Y = (tan-ty —1)e™ Y +¢

which is a general solution.

2.5 Bernoulli's di erential equations.

Definition 2.9. A differential equation of the form 9%+ Py = Qy", n € R\{0} is said to be Bernoulli’s
differential equation

In order to solve Bernoulli’s differential equation we will use the method of solving linear differential
equation. Bernoulli’s differential equation is given by

dy

&+ Py=Qy",n € R\{0}. (2.15)

Divide both sides by y" we get y "%+ y*-"P = Q. Now multiply by (1 — n) both sides we get

d
(L—n)y " o + (= ny*"P = (L-n)Q (2.16)

Now putv = y®-"and & = (1 —n)y-"%Y in equation (2.16) we get
dx dx

dv

o T @PY =(-nQ (2.17)
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Which is linear in variable v and can be solved by method of linear differential equation. Hence
substitute

= :e‘de :e'(l—n)de

in equation ve P9 ="Qe PIX 4+ ¢

cove @mmPA — 9  pye -MPdxgy 4 ¢

- ylfne’(lfn)de = (1- n)Qe’(lfn)dedX +c.
where ¢ is an arbitrary constant . Which is a general solution.
Examples 2.10. (1)Solve: x4 +y =x3y®

Solution: The given differential equation is not linear in x also not linear y. To convert it into Bernoulli’s
form we divide the equation by xy ® we get

d 1
o &Y +y5T =x2 (2.18)
dx X

y-

5

C.puty-5 =vand —5y-¢9 = & jnequation (2.18) we get & — 3v = —5x2 which is linear in v. Hence

dx dx dx X
comparing with general form of linear differential equation we get P = — X5and Q = —5x 2. Now

= x5

Now formula for solution is given by

where c is an arbitrary constant.

Sy xS = —5x%—Sdx + ¢
5 . . I .
Syt = 2‘x—2 + ¢, where ¢ is an arbitrary constant. Which is a general solution.

(2) Solve: x4% —y = y?logx.
Solution: To convert this equation in form of Bernoulli’s differential equation we divide both sides by x

we get
dy 1 logx »
o T x
NOw comparing with the general form of Bernoulli’s differential equation %+ Py = Qy", we get P =
0gx . Lo
—lx ;Q =—— with n = 2. Therefore the solution is given by

yl—ne’(l—n)de - (1- n)Qe’(l—n)de s
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log x
Lyx= —1_2_

xdx + c.

’ 7

1
. — logxdx +¢ == —[logxx — ;(xdx] +cC.
. X =y(c +x—xlogx). Which is a general solution of the given differential equation.

Remark 2.11. The general form of Bernoulli’s differential equation 9%+ Py = Qy"; n € R\{0} is given
by
oy Ay
f'y) ™~ LfyP_Q
dx

In order to solve this we put u = f(y) we get § = f'(y)% in general form we get %+ Pu = Q, which is
linear differential equation. Let us see the following examples to understand.

Examples 2.12. (1) Solve: sin y + XCOoSY = X.

Solution: Here u = cosy and 9" = —siny Y. Substitute these values in given differential equation we
dx dx
get
du
— —XUu=—X
dx

Which is linear differential equation in variable v. Therefore solution is given by

u(l.F) = Q(I.F.)dx +c.

=2 =
ue , = (—x)e 2 dx 4

1 2

cosy = > + ce 2 . Which is a general solution.

(2) Solve: & + %logy = ¥ (logy)>.
Solution: Divide both sides by y we get

ldy 1 1
——+ —Io =—(lo
y gy = 2 ( gy)
Now put u = logy, we get 1 4¥ = 4 substitute these values in above equation we get
y dx dx
du+ u u l1du 11 1
dx x x ufdx xu x

. Which is in the form of Bernoulli’s differential equation. By putting % = t and solving it we get
(logy)-! = 1+ cx which is general solution of given differential equation.

Exercise-III

Identify type of the following differential equations and solve them.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

CHAPTER 2. DIFFERENTIAL EQUATIONS OF FIRST ORDER AND FIRST DEGREE.

4% + ycosx =sinxcosx (Ans:y =sinx +ce~"™ — 1)

4¥ + 2xy = 2x, also y = 3 when x = 0 obtain a particular solution. (Ans:y =1+ ce~" and P.S.
2

isy =1+4+2e* )

¥ +ytanx =secx. (Ans:y =sinx + ccosx.)

cos?x 4y +y =tanx. (Ans:y =tanx — 1+ ce-1™))

(1 +x2)dy = (tan-*x —y)dx. (Ans:y =tan-'x —1+ ce-tn X )
X% +2y =x?logx. (Ans:y = x log x —¥ Tex-2)

4¥ + ycotx = 5e%%,  (Ans: ysinx = —5e%0+¢ )

4y + 2y tanx = sinx,also obtain particular solution with y = 0 when x = I,
dx 3

secx +¢; P.S=ysec?x =secx —2)

X2y =Y. (Ans:x =y3+cyl)

xlogx %% +y =2logx. (Ans: ylogx = (logx)? +c¢.)

& +ytanx =y3secx.  (Ans: cos?x = y2(c + 2sinXx))

=2

2 dy 1 2 -
Xy(L+xy g =1 (Ansi;=@2—-Yy )+ce 2 )

Y +ytanx=%*. (Ans:y?= coszx£c + Iogtani %+ éw.)
sec’y ¥ + xtany = x3.  (Ans: tany = x® — 3x%2 + 6x — 6 + ce—*))
0Cy® £xy)dx =dy. (Ans:y-! =2—x2+Ce:§z )
W+ ycosx =y3sin2x. (Ans:y—?=2sinx + 1+ ce?sinx)
x4 =y —"y. (Ans:4cX = (y —1—cx)2)

X — X2y +y4=0. (Ans: y3(3x +¢) = x3)

9 +ylogy =xye*. (Ans: xlogy = (x —1)e* +c)

(Ans: ysec?x =
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2.6 Exact di erential equations.

Definition 2.13. A differential equation M (x,y)dx + N(x,y)dy = 0 is said to be exact if there exists a
function f(x,y) suchthatd[f(x,y)] = Mdx + Ndy. That s,

of of
T dx + 7 dy = Mdx + Ndy.

ox oy

In other words if a differential equation can be obtain by direct differentiation of its solution, then we
call it an exact differential equation.

Necessary and Sufficient Condition for differential equation M (x, y)dx + N(x,y)dy = 0 to be exact:

Theorem 2.14. The necessary and sufficient condition for the differential equation M (x, y)dx+N (x, y)dy =
0 to be exact is M aN

Ee
Where M and 2N denotes the partial derivatives of M and N with respect to y and x respectively.
ay 238

In order to solve an differential equation of the type M (x,y)dx + N (X, y)dy = 0, first check the condi-

tion of exactness, "a—’\;'/ = 27’\‘ . If the condition satisfied, then the given differential equation is exact and

solution is given by

i ¢
Mdx + ! Terms in N which are independent of x dy =c.
y constant

Where c is an arbitrary constant.

Examples 2.15. (1)Solve: (x?2 —ay)dx + (y2 —ax)dy =0.
Solution: Here M(x,y) = x> —ay and N(x,y) = y? — ax

oM oN

a—y = —a and §=—a.

Therefore the given differential equation is an exact differential equation. The solution is given by

i ¢
Mdx + ! Terms in N which are independent ofx dy =c.

y constant
(x2—ay)dx+ y2dy =c
y constant

x3 3

—3 —ayX ?=C.

x3 + y® — 3axy = 3c. Which is a general solution.
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. dy ycosx+siny+y _
(2) Solve: dx + SinX+XCcosy—+x 0.

Solution: We write this equation in the form M(x, y)dx + N(x,y)dy = 0, we get (y cosx +siny + y)dx +
(sinx +xcosy +x)dy =0. and also M(x,y) = ycosx +siny +y, N(X,y) =sinX +Xcosy + X.

oM oN

6_y = COSX +cosy+1:a—x.

Therefore the given differential equation is an exact differential equation. The solution is given by

i ¢
Mdx + ' Termsin N which are independent ofx dy =c.
y constant

(ycosx +siny + y)dx + 0dx =c.
y constant

Coysinx +xsiny 4+ yx = ¢. Which is a general solution .

Remark 2.16. If condition@—“" /=3X‘9—N, then the given differential equation is not exact. In this case, if
there exist some function f (X, y) of two variables such that

f (X y)IM(x y)dx +N(x,y)dy = 0]
become exact, then f (x,y) is called an integrating factor denoted by I.F. For example, the differential

equation xg& + 2y + 3x = 0 is not exact, but by multiplying with x we getxzfé’er 2yx + 3x? = 0 which is
an exact differential equation. Thus, here integrating factor is x.

Rules for Integrating factor for M (x, y)dx + N (x,y)dy = 0:

1. If M(x,y)dx + N(x,y)dy = 0 is homogeneous differential equation with Mx + Ny /= 0, then

integrating factor will be !
Mx 1Ny
oM N

2. If % is only function of x say f (x), then e f ¥ will be an integrating factor.
oM N

3. If % is only function of y say g (y), then e 999 will be an integrating factor.

4. If given differential equation is of the form fi(x, y)ydx + fo(x, y)xdy = 0, then integrating factor
will be Mxl—ﬂy where Mx — Ny /= 0.

Examples 2.17. (1) Solve:(x? + y? + 2x)dx + 2ydy = 0.

Solutign: Comparing the given differential eqyation with M (x,y)dx + N(x,y)dy = 0, we get M(x,y) =

X2+ y? + 2x arﬁ)d N(X,y) g 2y. Here M /=qé—1@, therefore t&e {]%ven diffgrewtigl equationgis nog e%gct.
M N ay oX

ay X

Notice that, = 1which is only function of x say f (x). Hence I.F. = e f®d — gx,

SOLF(® + y2? + 2x)dx + 2ydy = 0] which is now reduced to an exact differential equation.
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Now, eX[(x? + y2 + 2x)dx + 2ydy] =d((x* + y?)e*) = 0

Thus, the solution is f(x +y et 2x)dx + 2ydy ] = d ((x 2y y )e ) = ¢, where c is an arbitrary con-
stant. .. (x2 + y?)e* = ¢ is a general solution.

(2) Solve: (xy sin(xy) + cos(xy))ydx + (xy sin(xy) — cos(xy))xdy = 0.

Solution: Comparing the given differential equation with M (x, y)dx + N (x,y)dy =0, we get M(X,y) =
(xy sin(xy ) + cos(xy))y and N(x,y) = (xy sin(xy) — cos(xy))x. Here ¥ = x2y2cos(xy) + yx sin(xy) —
yX sin(xy) +cos(xy) /= x2y?2 cos(xy ) + 3yx sin(xy) —cos(xy) = %%, therefore the given differential equa-

tion is not exact. Notjce that, it is of the form fl(x y)ydx + fo(x, y)xdy = 0, therefore integrating factor
will be = ——— where Mx — Ny /=
Mx —Ny 2xy cos(xy)

1

LLEIM(X y)dx + N(x y)dy] [(xy sin(xy) + cos(xy))ydx + (xy sin(xy) — cos(xy))xdy ]

 2xy cos(xy)

is now reduced to exact differential equation. Thus, solution is given by,

’ y 1 i
tan(xy)+ = dx — dy =logc,
y constant 2 2X 2y

where ¢ is an arbitrary constant.

y logsec(xy) 1 1
Ef +—2 log x 5 logy =logc.
X
". logsec(xy) + log )7 = 2logc

x = ¢’y cos(xy), which is a general solution.
(3)Solve: x?ydx — (x3 +y3)dy = 0.
Solution: Comparing the given differential equation with M(x,y)dx + N(x,y)dy =0, we get M(x,y) =
x?y and N(x,y) = —(x® + y®). Here %4 = x* /= —3x? = 9N therefore the given differential equation is
not exact. Notice that given differential equation is homogeneous differential equation. Hence, I.F =
MxINy _ yl
+ 47
-1
L LEIM(x, y)dx + N(x, y)dy] = —4[x2ydx -3 +y3dy]
v

is now reduced to exact differential equation. The solution is given by

> _X2 » 1
—dx * Tdy =logc,
y y
y constant
where ¢ is an arbitrary constant. 3
ST ,logy_logc.
3y3 *

3
. logy =logc+ =X
3y3

B8

".y =ce¥°®, which is a general solution.



Exercise-IV

1. Check the exactness of the following differential equations and solve it.
1. (x* —2xy2 + yHdx — (2x%y —4xy3 +siny)dy. (Ans: x5 —5x?y? + 5y*x + 5cosy = ¢.)
2. (sinxcosy +e)dx + (cos(xy)x? +eY)dy =0. (Ans: e —cosxcosy +tany = c.)
3. (xy cos(xy) + sin(xy))dx + (cosxsiny + sec?y)dy = 0.  (Ans: xsin(xy) +e¥ =c.)
4. (2xy +y + —tany)dx + (x> — xtan’y +sec’y)dy = 0. (Ans: x>y + Xy —xtany +tany = ¢.)
5. (yzeXy2 + 4x3)dx + (2xyeXyz —3y?)dy =0. (Ans: e’ x4 — y®=c¢)
6. (X®*+y2—a?)xdx + (x> —y2—Db2ydy =0. (Ans: x* +2x?y2 — y* —2a%x? — 2b?y? = ¢)
7. ysin2xdx = (1+ y2+cos?x)dy. (Ans: 3ycos2x + 6y +2y3 =c.)

8. §idx + ¥3¥*dy =0. (Ans:x*—y?=cy?)

©

£ j ¢ a
y I1+Xl +cosy dx +(x +logx —xsiny)dy. (Ans: y(x +logx) +xcosy =c.)
10. (sinxsiny + sec?x)dx + (tan?y —cosxcosy)dy =0. (Ans:tanx —cosxsiny +tany —y =c.)

2. Solve the following differential equations using integrating factor.

1. (xy sin(xy) + cos(xy))ydx + (xy sin(xy) — cos(xy))xdy = 0. (Ans: X = Cy COSXY.)

X3

_xeydx — (@ +y%)dy = 0. (Ans:y =ce’))

N

3. (y+y?—yd)dx—(x+xy2—y)dy=0. (Ans:x+xy +ylogy —xy2=cy.)

. ydx + (y —x)dy = 0. (Ans: yer =c)

SN

(2]

. (Xy —2xy?)dx + (3x2y — x%)dy = 0. (Ans: x —2ylogx +3ylogy =cy.)

20
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Index 3

Di erential Equation of First order
and Higher degree.

The general form of differential equation of first order and higher degree is

H ﬂn72 Cﬂ

d_\ﬁ'lln ud_y Tt ud_x

Where each P; isafunction of x and y. If §f = p, then the general form reduces to
p" + Pip"t + Pop"? + ... 4+ Py-1p + Py = 0.

Hence it also can be written as F (X, y,p) = 0. In this chapter we study following methods of solving
differential equation of first order and higher degree.
Method of solving differential equation of the form F(x, y, p) = 0.

1. Differential equations which are solvable for p.

2. Differential equations which are solvable for x.

3. Differential equations which are solvable for y.

4. Clairaut’s differential equations.

5. Lagrange’s differential equations.
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3.1 Di erential equations which are solvable for p.
Suppose we can write the differential equation F (X, y, p) = 0 of degree n in the form

(P — fu(x, Y — 20, )P — fa(x,¥)) - - - (p — falx, y)) = 0. 3.1)

Now comparing each factor with zero we get p — fi (X, y) = 0, where i = 1, 2,..., n. Which is linear differ-
ential equation. Suppose solution of p — fi (x,y ) = 0 isgiven by Fi (x,y, ¢ci) = 0. Where ¢; is an arbitrary
constant. Instead of taking different ¢; ’s in the general solution of p — fi (x,y) = 0 if we take only one ¢
in all, then it makes no difference in general solution. Therefore general solution p — fi (x, y) = 0 will be
Fi (x,y,¢) = 0. Then general solution of equation (3.1) is given by Fi(x, y, c)F2(X, y,c) - - - Fa(X, y,C) = 0.

Thus, differential equation of n degree and first order having linear factor p — fi (x,y) = 0 are known
as solvable for p.

Examples 3.1. (1)Solve: xyp® + (x> — 2y?)p? —2xyp =0
Solution: The given differential equation is of degree 3 and therefore it has three linear factor.

p[xyp® + (x* — 2y?)p — 2xy] = 0.

CLp[xyp? +x2p —2y%p —2xy] =0.
S p(xp —2y)(yp +x) = 0.
Comparing these three linear factor with zero we get
1. p=0==>y—-c=0.

2.xp—2y =0 == 4 =2% ==y =cx’.

3. yp+x=0==>ydy +xdx=0==>x2+y?—2c=0.

Therefore, the general solution is given by multiplying these three solutions of linear factors of given
equation. .". (y — c)(y — cx®)(x®> + y2 — 2¢) = 0. Which is a general solution.
(2)Solve: gy — g—; =3—4%

Solution:putpzd_ywegetp—lzl—y.
dx p y X q
]
X
p>+p Y X o9
X, Y
3 yﬁl o1
p+ p 0
x y

Now comparing the linear factors with zero we get

1 dy y
" T x=0==xdy +ydx =0. == d(xy)=0 == xy =c

o dvy oy 2 2
" x =0==>xdy —ydx =0. ==>x -y =c

X
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Thus, the general solution can be obtained by multiplying the general solutions of the linear factors of
given differential equation.

(xy —c)(x* —y?—c) =0.
Which is a general solution.

Exercise-V

Solve the following differential equations.

=

CPP—(x+3y)p+2y(x+y)=0. (Ans. (y—ce->)(x+y—1—ceX)=0)

2. pP—7p+10. (Ans.(y —=5x—c)(y —2x —c)=0.)

3.p(p+y)=x(x+Yy) (Ans. 2y —x®+c)(y +x+ce*—1)=0)

4. yp2+(x—y)p—-x. (Ans.(x —y +c)(x*+y?+c)=0)

5. p*+2xp2 —y2p? —2xy?p =0. (Ans. (y —c)(y +x>*—c)(xy +cy +1)=0)
6. p>+2pycotx —y?2=0. (Ans.y(l=*cosx)=c.)

7. x?2p2+xyp —6y2=0. (Ans. (y —cx?)(x®y —c)=0)

8. y?p2—x2=0. (Ans. (X>+y2+c)(x2—y?+¢c)=0)

9. p>+2pcos2x —sin?x =0. (Ans. (2y +2x +sin2x +c¢) =0.)

3.2 Di erential equations which are solvable for vy.

If the differential equation of the form F (X, y, p) = 0 can be writtenas y = f (x, p) = 0, then it is said to
be solvable fory . In order to solve these types of differential equation we differentiate with respect to
X we get u ]

d of of dp d
_Y:p:_+ =F x,p,Jl . (3.2)
dx ox dp dx dx

Which is in variable p and x. Hence its solution is given by g (X, p, ¢) = 0. By eliminate p from equation
(3.2) and g (%, p, ¢) we get function @(x, y, ) which will be the general solution of the given differential

equation. If it is not possible to eliminate p, then general solution can be obtained by taking x =

Fi(p, c) andy = F2(p, ¢). Where c is an arbitrary constant. Let us see following examples to understand
this method.

Examples 3.2. (1).Splve: xp2 —2yp +ax =0 )
Solution: Here, y = <xp + =2 ; by differentiating with respect to x we get
2

2p
dy 1 1 dp a axdp

- —
dx 2 t27 o 2p  2p?dx



24 INDEX 3. DIFFERENTIAL EQUATION OF FIRST ORDER AND HIGHER DEGREE.

= X— +
p= X ps dx p dx dx
H 1
d
(PP -a) p—x‘g =0
dx
d
p—xag‘ =0orp®*—a=0.
dp dx
. _p = == logp = logx + logc.
Sp=CX
Now, substitute p = cx iny = 2xp + 12 we get, y = 2cx2 + 12, Which is a general solution.
2 2p 2 2¢c

3
(2) xp —y +x2 =0.
Soluti03r1:The given equation can be express in the form y = f (x,p). Therefore it is solvable fory. y =
xp + x 2. Differentiate with respect to x we get,
dy dp 3 1
& =p+ X& + EX 2,
dp 3 : dp 3

..p’=p+x?9—xjj—£xz ==t 3
odp+ T =c==>p+3°x=c

2 °X

=0.

Sp=c—3’x
S
Now to eliminate p, substitute its value in equation y = xp + X2 we get,

3
y = cx — 2x 2. Which is general solution.

(3) Solve: x +2(xp —y) + p? =0.

Solution: The given eguation can be express in the form y = f(x,p). Therefore it is solvable for y.
y = =X + xp + *p?. Differentiate with respect to x we get,
2 2

dy 1 dp dp
&ZDZE—FD—FX&—FDK.
dp 1
..(X+p)a+2—=0.
Nowputx +p=uwegetl 4, du
+d><_dx
H 1

= _1 +_=0.
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du 2u-—-1 2u
C = == du = dx
dx 2u 2u—1
’I"l 1 ﬂ ’
) 1+ + dx +c.
2u-—-1
1
u+—2 log(2u —1) =x +c.
1
.'.x+p+—zlog(2x +2p—-1)=x+c.
1

5.2p +—2 log(2x +2p —1) =c.
So2X+2p — 1 =e%-c,

X = lez"*“rl—p

SX = .
Here we can not eliminate p from above equation. Hence, the general solution can be obtained from
y=#x +xp +ip?and x =,te?-¢+1—p.

3.3 Di erential equations which are solvable for x.

If the differential equation of the form F (x,y, p) = 0 can be written as x = f (y, p) = 0, then it is said to
be solvable for x . In order to solve these types of differential equation we differentiate with respect to

y we get H 1
d of  of dp d
_X=p=_+ =F x,|o,Jg : (3.3)
dy gy opdy dy

Which is in variable p andy . Hence its solution is given by g (y, p, ¢) = 0. By eliminate p from equation
(3.3)and g (v, p, ¢) we get function @(x, y, ¢) which will be the general solution of the given differential

equation. If it is not possible to eliminate p, then general solution can be obtained by taking x =
Fi(p, c)andy = F»(p, ¢). Where ¢ is an arbitrary constant. Let us see following examples to understand
this method.

Examples 3.3. (1)Solve: y2p? —3xp +y = 0. 3

Solution: The given differential equation is of the form x = f (y,p), where f (y,p) = 15 % +y?p . Now
differentiate with respect to y we get

.3dx =31 1y dp 42yp+y2dp.

dy p p p2dy dy
2 ¥ JLﬂQQ
S2yp— T 4 i =0.
p p? dy

: dp
C2p(yp* — 1) +y(yp* — 1 gy =0.

H f
Cpyn? dp "~ _
Soypr -1 2p+ydy 0.



26 INDEX 3. DIFFERENTIAL EQUATION OF FIRST ORDER AND HIGHER DEGREE.
We ignore yp? —1 = 0 we get and consider 2p +y %, = 0.

. logp +2logy = logc.
VR _C
S.opyl=c= p_v2'

Hence, substitute value of p we get y 3 — 2cx + ¢ = 0. Which is a general solution. (2)Solve:x = p + %.
Solution: It is easy too see that this differential equation is solvable for x. By differentiating with respect

toy we get
dx 1 dp 1dp

WP W Py

1 1“@9 pz—lﬂ
=1 — dp =dy.
p p? dy b=
1”‘ ﬂ ’
p—~ dp= dy+c
p
2
.'.y=p—2—logp+c.

Where c is an arbitrary constant. I—gere, it is difficult to eliminate p. Therefore, general solution can be

obtained by taking x = p + lp; y = % —logp +c.
Exercise-VI
1L.y=@Q+px+p> (Ansx=-2p+2+ceP;y=2—p*+c(l+p)er)
2. Xp—y+ X (Ansiy =cx +2°X)
3. y=2p+3p> (Ans:x=2p+3p%y=2logp+3p+c.)
4. y +px =p3x*  (Ansixy =c?x —c¢.)
5 y?p2—3xp+y=0. (Ansiy®—3cx+c?2=0)

6. y=2px—p2 (Ansix =2p+cpy=1p2+ %)
3 3 p

7. y2+p*=0. (Ansyy = xsin(x +c).)
8. p’y+2px =y. (Ansiy?=2cx +c2)
9. y—2px=tan-'p. (Ans:2’cx +tan-1c.)
10. xp2—yp—y =0. (Ans:c(l+ p)eP;y =cp?cP.)

£ o
11. y =x+atan-tp. (Ansx+c=3 log(p—1)—#log(l+p? —tan-ip ;y =x+atan-1p.)
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N iR a——.
12. x2*=a?(1+p?). (Ansx=a 1+p%y=3 p 1+p2—logp+ p+ p2+1) +c)

13. p?P=(p—1)y. (Ansix=log(p—1)+ - +ciy= ")
p-1 p-1
14. x= P +tan-lp. (Ansx=x= P +tan-lipjy=c— 1)
1+p? 1+p? 1+p

15. p? —4xyp +8p>=0. (Ans:c(c — 4x)? = 64y.)

3.4 Clairaut's di erential equations.

Definition 3.4. A differential equation of the form y = px + f(p) is known as Clairaut’s differential
equation.

Itis easy to see that Clairaut’s differential equationy = px + f(p) is solvable for y. Hence, in order to
solve we differentiate with respect to x on both sides we get,
dy dp ., dp
=p=p+x +f(p)
dx dx dx

d
== (F(p) + ) gy =

_. 9 _ (o) =
== 4y =0orx+f'(p) =

By taking the case %( =0wegetp = %; = ¢. Where c is an arbitrary constant. Thus, by eliminating

p from Clairaut’s equation we have the family of straight lines given by y = cx + f(c), as the general

solution of Clairaut’s differential equation. The later case x + f '(p) = 0 defines only one solution y ()
, so-called singular solution, whose graph is the envelope of the graphs of the general solutions. The

singular solution is usually represented using parametric notation, as (x(p), y (p)), where p represents
dy

dx *

Examples 3.5. (1) Solve: x?(y — px) = yp2.

Solution: The given differential equation is not Clairaut’s differential equation, but by taking x*> = u
and y2 = v we,can convert it into the Clairaut’s form. x> =u == 2xdx =du, andy?>=v == 2ydy =

dv. =W == p=xdv . Now given equation reduces to
xdx du y du
M 2 dy T xzud_vﬂ2
YTV TN
,dv Hav'e
2 = .
Y* =X du du
dv Mdv™
v

ZUEJF du
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Which is Clairaut’s differential equation. Hence, the general solution can be obtained by taking %'u: C.
Hence v = cu + ¢ and y? = cx? + ¢? is the general solution.

(2) Solve: sinpx cosy = cospxsiny + p.

Solution: The given differential equation is not of the Clairaut’s form. Notice that,

sinpxcosy —cospxsiny =p == sin(px —y) =p

px —y =sin-1p.
y = px + sin-1p,whichis in Clairaut’s form.
p=c == y=cx+sin-1c, whichisa general solution.

(3)Solve: e*(p — 1) +e¥p? = 0.
Solution: The given differential equation is not of the Clairaut’s form, but by takinge* = u ande® =v
we can convert it into Clairaut’s form.

T,

V-u + . Which is in Clairaut’s form.
du du

dv Mav

dv

2 2 . .
a=c ==>v=Uuc+c ==e% =ce® +c .Whichisageneral solution.

3.5 Lagrange's di erential equation.

Definition 3.6. A differential equation of the formy = xf (p)+ F (p) is known as Lagrange’s differential
equation.

Itis easy to see that Lagrange’s differential equation is solvable for y. Hence, in order to solve this
differential equation we differentiate with respect to x on both sides we get

dy ., dp ., dp
=p=Ff@E+xf'(P) +F'(P) .
dx dx dx

d
=T (R) = XF () + F ()] gy
. dx xf'(p) +F'(p)

dp p— f(p)
L _ ) F®

dp p—f(  p—f()

Which is linear in x and p. So it can be solved by method of linear differential equation ®Yyg- Py = Q,
where P and Q are functions of x only.

Remark 3.7. 1. Anequation of the formx = yf(q)+F (q), where q = %yis also known as Lagrange’s
differential equation and also can be solved by using method to solve differential equation which
are solvable for x.
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2. By taking f(p) = p in Lagrange’s differential equation we get Clairaut’s differential equation.
Thus, Clairaut’s differential equation is a particular case of Lagrange’s differential equation.

Examples 3.8. (1)Solve: y = 2px — 3p2
Solution: The given differential equation is solvable for y. In order to solve we differentiate with respect
to x on both sides we get,

dy dp 2pdp

TT=P=2p+ 2~ — 7 :

X dx X
R T
So-p=2 x—="p ==p +2 x—"p =0

3  dx dp 3
dx 2 2
d_p BXZE.

Which is linear in variables x and p. Thus, solution can be obtained by,

x(1.F.) = Q(I .F)dx +c¢

)
Where | .F. = ¢ de = g2oop — p2 and Q = 2.

w

2 7 g 2 2p3
Sxp = 4P dp+c =z +c Wherecisan arbitrary constant
2 c
SoX=—p+—s.
x="gP 7
2+4.Hence,x=2p+£andy=lpz+2_cis

Substitute this value of x in given equation we gety = lp
9 p 9 p? 9 p
a general solution.

Exercise:VII

Solve the following differential equation.

1. y=px +p-—p>% (Ansyy =cx +¢ —c2)

2. y=px+ P.(Ansy =cx + ¢.)

3. y =xp —p?+logp.(Ansiy = cx —c? +logc.)

4, (x—ap?>+(x—y)p—y=0.(Ans:y = cx — afj—l.

5. y2p3 —2xp +y = 0.(Ans:y2 = cx — $¢3)

6. X +yp =a+bp.(Ans:x? + y2 = 2(ax + by +¢c).)

7. pP—6px +3y =0. (Ansx 2 3., P 6
3

8. x+y= L+p

2
w2 _ Sy — —pRe2p—i-
1p . (Ans:x = T=py? +ky = A=p7 —k)



9. p?=(p—1y(Ansx =log(p —1) + = +c;y = P2 )
p-1 p-1

10. e¥(p — 1) + p%e? = 0.(Ans:e¥ =ce* +c3)

11, (px — y)(x — py) = 2p.(Hint: X2 = u,y%2 = v). (Ans:cx? —c(x®2 +y2—2)+ y2=10.)
12. p* —xp —y = 0.(Ans:x = 2p? + ,J‘ﬁ andy = £p® —k*p.)

13. p?(x —5) +(2x —y)p — 2y = 0.(Ans;y =cX — Eﬁz})

14. p? +2p cos2x —sin?2x = 0.(Ans:(2y + 2x +sin2x +c¢)(2y —2x +sin2x +c¢) = 0.)
15. y? = xyp +*.(Hint: x2 = u,y? = v).(Ans:iy? = cx? +¢3)

16. y2(y —xp) = x*p%. (Hint: x = 1,y = 1).(Ans: L=5+¢)

Index 4

Higher Order Linear Di erential
Equation

Definition 4.1. If Py, P,,..., Py, X are functions of x or constants, then

dny d n—ly‘ d n—2¥
dxn dxn—l dxn—2 T +Pny = X (4'1)

is called n*" order linear differential equation.

In equation (4.1) if X = 0, then equation is called homogeneous linear differential equation, otherwise
it said to be non-homogeneous differential equation.

30
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Solution of linear equation (4.1) can be separated into two parts.
(a) P1,P2,..., P, are constants.
(b) P4, Py, ..., P, are functions of x.

In this chapter we discuss the different methods to solve linear differential equation of type (a).

Theorem 4.2. If y; and y; are solutions of equation

dny d nfly d n72¥ ~
Py o Py ot 4Py =0 4.2)

then c1y1 + c2y2 (= u) is also its solution, where ¢1 and c; are arbitrary constants.

-+ P2

Proof. Sincey = y; andy = y, are solution of (4.2),

d"y, d”*1y1
axn + Py a1 + - - 'Pnyl =0 (43)

dny2 dn71y2l

dxn Py dxn—1 + Py =0 (4.4)
Then d"(ciy1 + C2Y2) )((1”*1(01 Y1 + C2V2)
n +P; -1 + - Pn(C1y1 + Czyz)
d"y: gn-1 yi T My V2 dnflyzl l
=C g +P: e “Pay1 e X" +P: e - Pny2
=¢1(0) +¢c2(0) =0 [by (4.3) and (4.4)]
_ d"u dn—1uy
i.e WP1dF+---PnU=O (4.5)
This proves the theorem. O

Since the general solution of n'" order differential equation contains n arbitrary constants, it follows,

from the above, that if y1, y2, ..., yn are n solution of (4.2), then ci1y1 +C2y2 + - - - +Cn Yo (= U) is a solution
of (4.2). This solution is called the Complementary function (C.F.) of equation (4.2).
If we denote the complementary

Suppose thaty = v be any particular solution of

dhy dn—1
e +k1dx”T+' “kay =X (4.6)
where ki, k2, ...k, are arbitrary constants.
d"v dn—1ly
Then X" + ki dxn—_1+ - kov =X 4.7
: d"(u , v) d"-*(u L v)
Adding (4.5) and (4.7), we have dxn T gkt +oe k(U V) = X

This shows that y = u + v us the complete solution of (4.6). Here y = v is called the Particular solu-
tion(P.1.) of (4.6).

.". The general solution (G.S.) of (4.6) isy = C.F.+ P.L
Thus in order to solve the equation (4.6), we have to first find the C. F. , and then the P. 1. . For a
homogeneous differential equation the C. F. and G. S. will be same.
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4.1 Operator ‘D

To find the solution of linear differential equation, operator ‘D ° play very important role.
‘D ’ is defined as follow

p ¢4 pe_d* n_ d"

= dx dx2’ " axn
_dy Dy- d?y 2 d"y n
S Yy, dezD y,...,dxnsz

With this notation the equation (4.1) can be written as
(D" +PiD™t 4 - - + Py =X Qe f(D)y=X

where f (D) =D" + P.D"-* + - - - + Py, i.e.a polynomial in D.

Thus the symbol D stands for the operation of differentiation and can be treated much the
same as an algebraic quantity i.e. f (D) can be factorized by ordinary rules of algebra and the factors
may be taken in any order.

4.2 Rule to nd the Complementary function:

Consider the equation

d'y dn—1

axn +|(1de-' : -kny=0 (4.8)
where ki, K2, ...k, are arbitrary constants.
Then this equation in symbolic form is (D" + kD"t + - - -+ + ky)y = X. Its symbolic co-efficient

equated to zero i.e.
D"+ kD"t + - +k, =0

is called the Auxiliary Equation (A.E.).
Since it is an n™ order polynomial equation in terms of D, it has n roots say mi, mz, ..., Mn.

Case : | Ifall the roots be real and different, then the G. S. of (4.8) is given by
y = Cie™* 4+ ce™* + . - - + g™

Case : Il If two roots are equal (i.e. m; = my), then the G. S. of (4.8) is given by
y = (C1 +Cox)e™ + - -+ 4 cre™*

If, however, the A.E. has three equal roots (i.e. my = m, = mg), then the G. S. of (4.8) is given by
y = (C1 + CoX + Cax?)e™* + - - - + cre™*

Case : Il If one pair of roots be imaginary, i.e. m; = a+iB8, my = a—iB, then the G. S. of (4.8) is
given by

y = e®(c1 cos(BX) + Czsin(Bx)) + cze™* + - - - + cre™*
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Case : IV If two pairs of imaginary roots be equal i.e. my = m; = a+ i, ms = ms = a —iB, then the
G. S. of (4.8) is given by

i ¢
y = e¥ |(cl + C2X) cos(BX) + (Cs + CaX) Sin(BX)  + Cse™* + -« - - + cpe™*
d?y dy
Example 4.3. Solve d?_'_ dT— 2y =0.

Sol. LetD = &. Then given equation reduces to (D?> + D — 2)y = 0.
ItsA.E.isD*+D—-2=0,i.e. (D+2)(D—1)=0whenceD =-2,1.
Hence the G. S.isy = cie— + ceX.

d?y dy

Example 4.4. Solve d?+ GdT+ 9y =0.

Sol. LetD = d%. Then given equation reduces to (D? + 6D + 9)y = 0.
ItsA.E.isD?+6D+9=0, i.e. (D+3)>=0whenceD =-3,-3.
Hence the G. S.is y = (€1 + C2x)e—3*.

Example 4.5. Solve (D% + D? +4D +4)y =0.

Sol. Herethe AE.isD*+D?+4D +4=0 ie(D*+4)(D+1)=0 ..D=-1+2i.
Hence the G. S. is y = cie~* + e™[cz cos(2x) + 3 sin(2x)] = cie~* + ¢, cos(2x) + ¢ sin(2X)

d“x
Example 4.6. Solve dt_4+ 4x = 0.

Sol. LetD = a‘%— Then given equation reduces to (D* + 4)x = 0.
Its AE.isD*+ 4 = 0.

. D*+4D?+4—-4D? =0
. (D*+2)?—(2D)2 =0

. (D?+2+2D)(D?>+2-2D)=0
. D*+2+2D=0 or D*’+2-2D =0
_=2£'-4 2% -4
2 2
“D=-1=+i or D=1+

Thus the G. S. is y = e~'[ci cos(t) + ¢ sin(t)] + e [c3 cos(t) + ¢4 sin(t)].
Exercise-I

Que :1 Solve the following differential equation.
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1.y"=2y'+10y =0 Ans. y = e*[c; cos(3x) + ¢, sin(3x)]
2.4y +4y" +4y' =0 Ans.y =c; +(C2 +¢3 x)e z
3 - 3 o
d3y x° 'z T
3.4 ty=0 Ans.y =cie- +ez €C0S 3 4czsin 2
d’y d?y dy 2 x
4'd7_3dx_2+3dT_y:0 Ans. y = (C1 + CoX + C3X )e
dy  d?y _
S. e 8(17+ 16y =0 Ans. y = (C1 + €2X) c0s(2x) + (Cs + CaX) sin(2x)
d*y L s s 8
6. S + a'y=0 Ansy =g 2 C1C0S = 4 cogin 5 +e 72X C300S 2 4 cysin
d“x
Que: 2 If v m *y, show that x = ¢, cos(mt) + ¢, sin(mt) + c3 cosh(mt) + ¢ sinh(mt).
t 3

4.3 Inverse Operator:

ated upon by f (D) gives X.

Yoo 1 U
ie. f(D) f(D)x =X
1
Thusy = E)X satisfies the equation f (D)y = X and is, therefore, its particular integral.
2 Ix—'xa
) = X.

1
Let — X _v.
D’ =

1
i =X = i — dy
Operating by D, D DX Dy. i.e. X .

Integrating both the sides w.r.t. x, we gety = ~ X dx.
_1 I
Thus pX= X dx.

1 )
3. X = eax Xe—ax dx.

D-—a 1
Let D_ aX =Y.
1 _v
OpeaatingbyD—a, (D—a)p_gX=(D-—a)y. =X A
ay
i.e. dx ay = X, which is a linear equation in first order.

So solution is ye-2 = "Xe-a*dx =y =e™ Xe-2Xdx.

Hint: Use sinhx = © 7 andcoshx = %

.. 1
Definition: ﬁx is that function of x, not containing arbitrary constants which when oper-
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1
Thus X _y_e® ” Xe-2*dx.

D-a
i 1
Example 4.7. Find 02X
D2+2D —15
Sol. 1 02X _ 1 e
D2+2D —15 (D +5)(D-3)
1 1 o2
(Df55 ©-=3) T . 1
= e e—3xXe2xdx VT X =e™ Xe—¥dx.
(D + 5) D-a
1 2X
= - e
— —875)( ’ e5xe2xdX
1 2X

4.4 Rules for nding the Particular Integral

d'y dgn-1
Consider the equation ,—+ ki —X < kay = X,

dxn dxn-1
which in symbolic formis (D" + kD"~ + - - - + ky)y = f(D)y = X.
! X ! X
T R )

Case .1 WhenX , ex 1
Iff(a)/=0,then = e®* =" %,

f&D) f(ai
If f (a) =0, then e =X e, provided f ‘(a) /=0.
(D) G
If f(a)=0and f ‘(a) =0, then e = x? e?* provided f “(a) /=0, and so on.
f(D) f"(a)
Case : Il WhenX = sin (ax + b) or cos (ax + b).
Iff(—a? /=0,then — sin(ax + b) = —  sin(ax + b).
f(p?) f(~ad)
If f (—a? =0, then sin(ax + b) = x sin(ax + b), provided f '(—a?) /= 0.
f(D?) 1 f'(—a?)
If f(@ =0and f (&) = 0, then sinfax +b) = x>~ sin(ax +b), provided f "(—a?) /=0,
2 "
and so on. 19 =29
Similarly if f (—a?) /=0, then cos(ax + b) = = cos(ax + b).
f(D?) 1 f(—a?)
If f (—a?) =0, then cos(@ax +b) = x—  cos(ax +b), provided f ‘(—a?) /= 0.

f(D?) f'(—a?)
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1 1
Iff(a)=0and f ‘(@) =0,then — cos(ax +b) = x>~ cos(ax +b), provided f "(—a?) /=0,

f(D?) f "(—ad)
and so on.
1 | Y .
Example 4.8. Solve iz 5 ix +6y=e
Sol. Here given differential equation ig non-homogeneous. So general solutionisy =C. F. +P. I.
dy dy

dx2 5d—+x 6y = 0.

d
LetD = (; Then this equation reduces to (D? — 5D + 6)y = 0.
And A.E. is D?-5D+6=0.>(D-3)(D—-2)=0. =D = 3,2
Thus C. F. = cie¥ + ce¥.

Tofind C. F. consider the equation

1
And Pl="" e
D2 -5D +6
1 H 1 1o, 1
= = o J— =—_&¢
16—20+6 f (D) f(a)
1 4x
=T"e
2
Now G.S.=C.F.+P.1.. 1
4x
=y =cie¥ +ce® + €
d?2y dy
Example 4.9. Solve 6 (W‘f‘ 17 e 14 = sin(3x).
Sol. Here given differential equation is non-homogeneous. So general solutionisy =C. F. +P. I.
d?2y dy
To find C. F. consider the equation 6 dx_2+ 25 d7+ 14=0.

d
Let D = ;_ . Then this equation reduces to (6D? + 25D + 14)y = 0.

ANdAE.is 9%6D?+25D +14=0. = (3D +2)(2D +7)=0. =D = —2, —Z

2 7 3 2
Thus C. F. = cie-3" 4+ ce-2%,

1

And P =" sin(3)

6D +25D +14 TR . 0

= sin(3x .. : _ .
6(—9) +25D + 14 (30 -f(Dgsm@X+b)—f(_¥)ﬂMw«+m

1 1  (5D+6)

"5 (5D-6) (5D +6)
1 (5D +6)

sin(3x)

= E . msin(Sx)
= —L [5D sin(3x) + 65in(3x)]

= —45 [15cos(3X) + 6sin(3x)]
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Now G.S.=C.F.+P. ..
2 7

=y =cie-3" +ce-2" — 7=[15c0s(3x) + 6sin(3x)]

Exercise-II

1 1
Que : 1 Findthe value of (i) e, (ii) e, (iii) — cos(2x).
. D2 +2D - 15 D2 +6D -9 . D3+D2-D-1
Ans.: (i)—7e (ii)ix%e—> (iii)— % (2sin(2x) + cos(2x))
Que : 2 Solve the following differential equation.
1.(D° —6D?+11d —6)y =e2e>  Ans. y = cie* + Coe> +cae® — —1- (22 + %)
a2y d , 120 o
2. — .+ 5y = —2cosh(x) Ans. y = e-[c; cos(x) + ¢ SIN)] —55 — 2.
3. 4 1)([5j 32y = e¥ + e Ans. y = (c1 + czx)e3x +cge X + Lx2e¥ 4 Lgx
dox _dx . £ ¢ g ¢a 2
4, + 2_ + 3x =sin(t) Ans.y =e !t ¢ cos .2t C2 sm T2t [sm(t) — cos(t)]
dt2  dt 4
d 2y d Yy X 3x 1 .
5. Frva 4“ + 3y = cos(5x + 3) Ans.y =cie +C& — g [10sin(5x + 3) + 11cos(5x + 3)]
6. (D? + 3D + 2)y = sin(3x) cos(2x) Ans. y = cie* + ce~> + gar [10c0s(5x) — 11sin(5x)]

+-1 [sin(x) + 2 cos(X)]

d d d 20

L8 BV oy sin(2x)  Ans.y=c +(c +c x)e* — X e*+ 2 cos(2x) — 2 sin(2x)
dx3 dx2 dx 12 3 B 50 25

7.

Case : 1l WhenX1= xm,
Here P. 1. = xm —[f(D)]-1xm.
D)

Expand [f (D)]-! in ascending power of D as far as the term in D™ and operate on x™ by term.
Since the (m + 1) and higher derivatives of x™ are zero, we need not consider terms beyond D™.
Note: Use the following formulae to expand [f (D)]-.

(1) 1-D)*'=1+D+D*+D%+

(2) 1-D)?=1+2D+3D?+4D%+ - - - +(L+m)D" +

(3) 1-D)-*1+3D+6D %10D ¥---+ mD ™% --.

4 1+D)*=1-D+D?-D*+D*-D°+

Case : IV When X = e2xV, whereV isa function of x.
eV = g ;V

f(D) f(D +a)
Case : V  When X }s any other function of x.
HereP.l. _ = X.

~ (D)
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If f (D) = (D —my)(D — my)...(D — my), resolving into partial fractions,

1 A1 A An
= : Foeo )
fO) D-m D-m D —my
1
P L =—X.
f@Q
Az A7
= +oet X.
D_m; D—m2 D_mn
1 1 1
=A X+A — X+ +A X.
'D-m ’D—m, "D—my

= A1e™* Xe-MX dx + Ae™* Xe-m2X dx + -+ - + Ape™* Xe-mX dx.
Ll 1 s 1
—X — ax X —ax X.
‘D_ e e d
This method is a general on and therefor can be applicable to obtain a particular integral in any given
case.

d?2y dy ,
Example 4.10. Solve d—2+ I X +2x+4
Sol. Here given differential equation i |s non-homogeneous. So general solutionisy =C. F. +P. L.
d?y dy
Tofind C. F. consider the equation ﬁ d——O Then A.E. D +D=0. .. DD+1)=0 = D=
0,—1.
. C.F.=c1+ce
1
And P.I. _ (x? +2x+4)
DD +1)
1
= _ (D+1)-Yx?+2x + 4)
D
di ¢
=~ 1-D+D?’-D3+D*—- - (xX*+2x+4)
P 1
1
"5 -1+4D-D’+D*— - (X*+2x+4)
1

2
:B(X F2X+4)— (¢ +2x+4)+ D2 +2x+4)— D +2x+4)+D(X* +2x+4)+

= (XR+2X+DdX - (X +2X+4)+(2x+2+0)—(2+0+0)+0

3
X

=?+X +AX =X —2X—4+2x+2-2
X3+4 4

= — X —
3

3
X
ThusG.S. =C.F. +P.I. = y=c1+0ce ‘X+?+4x—4
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Example 4.11. Find P. I. of (D? — 4D + 3)y = e*sin(2x)

Sol.

1
P.l1. = e sin(2x
D2-4D +3 4 (29

4x 4x

sin(2x)

D+ 424D +4)+3

e sin(2x)
D2+4D +3

= e _ sin(2x)
(—4) + 4D + 3

1sin(2x)

_ e4><

4D+1
—e¥ sin(2x)
D2—1

+1
e sin(2x)
a —65
e4x

= _4?5 [4D sin(2x) + sin(2x)]
e™ .
=~z [BC0s(2x) +sin(v)]

Example 4.12. Solve (D? + 16)y = tan(4x)

Sol. Here given differential equation is non-homogeneous. So general solutionisy =C. F. +P. I.
To find C. F. consider the equation (D? + 16)y = 0. Then A[E. D?+16=0 .. D == 4i
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. C. F. =c1c0s(4x) + c2sin(4x)

1
And P. 1. =" tan(4x)
e N B
= - tan(4x)
8i D—4i D+4i
=& —— tan(a L@
i n(4x) — n(4x
B 5 g AN gy tant). ) T . T
=" e e—*Xtan(4x)dx —e—** e4*tan(4x)dx T X =e®™  Xe—¥dx.
8i _ D-a
= l 4ix .. Ji ’
gi © [cos(4x) — i sin(4x)] tan(4x)dx —e—**

[cos(4x) + i sin(4x)] tan(4x)dx

= 8% e*X [cos(4x) tan(4x) — i sin(4x) tan(4x)]dx

—e—4x [cos(4x) tan(4x) + i sin(4x) tan(4X)]dX,

= ghix [sin(4x) —isin? (4x) COS(4X)]dX
—e—%X [sin(4x) + i sin? (4x) cos(4x)]dx
Iy ’ 1
— etx sin(4x)dx — i sin?(4x)cos(4x)dx
8i 1 1
—e—4X  sin(4x)dx +i  sin? (4x) cos(4x)dx
. H
1 4ix  cos(4x)  sin® (4X)ﬂ

= e - +i—
—4ix  cos(4x) iSin3 (4x) T oa f "+1(x)
—e - 4 — 17 ; oo f dx =
1 sin3(4x)3 six  —4ix  cos(4x) : s 4ix
=i 5 e +e . e -—e
1 sind(4x)° cos(4x) : -'
ThusG.S. =C.F. +P.l. = y = c;1c05(4x) + c2sin(4x) + - 1(2 ) e | g _ 4 e _ g4
Exercise-III
3 3
. . 1 .. % . 1 3 .. 3x | 3
Que : 1Find (i) x3and (ii) x¥® Ans.(i) — = X g 3 = (ii)® x¥—-2x+°*
) 2 tz Tty T 2
D-2 D-—-2D +1

Que : 2 Solve the following differential equation.
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dzy dy 2 X 2
Ly tlggty =&+ Ans.y = (C1 +CX)e~ +X 2x+2°
2 3
2.(D*—6D +9)y =e¥*(1+X) Ans.y =(c +C x)e¥*+e¥ * 4+ *
12 7%

dzy = 2 — X —X 2

3.dX2—y—X -1 Ans.y =cie* +ce* —1-x

2 D _2 x A S ce?
4.(6D* _D _2)y _xe ns.y _ced ,c ¢ ¢a

5.(D? — 2D + 3)y = cos(X) + x? Ans. y =g clcos "X +casin 2K

o]
+17 2cos(x) — 3sin(x) + 4x% + @ + ﬁg
6.(D® —D)y = 2x + 1 +4cos(X) + 26  AnS. y = C1 + Coe* + Cae—* + xe¥ — (% +X) — 23|n(x)
X

7.(D* — 1)y =¢* cos(x) Ans.y = Ci€* +Ce~ + CgcoS(X) + Ca Sin(x) — = COS(X)
2 e 5

d y d y 3x X 2x 3 1 ]
8 52 " 3g Yy =xe +sin(2x) Ans.y =cie +0e  +,m(2x = 3) 43, C08(2X) — z5in(2X)

dy 2 3x X i,— ¢ i,.— ¢ exj 2 1x 50
9. @ Ty =xe +e cos(20) Ans.y =cicos  2x +Cpsin X+ X T T

eX
+l—7 (4 sin(x) — cos(x))
2X _ ¢

e
10. (D® + 2D? + D)y = x2® +sin2(x) Ans.y = C1+ (C2 + ch)e*" BT e Tg 4
+55 100 (3sin(2x) + 4 cos(2x))

xe " i
11. (D? — 1)y = xsin(x) + (1 + x?)e* Ans. y =cie* +ce X + 5 "%~ 3x +9 —gl (x sin(x) + cos(x))

12

Now we shall study two such forms of linear differential equation with variable co-efficient which can
be reduced to linear differential equations with constat co-efficient by suitable substitutions.

4.5 Cauchy's homogenous linear equation

An equation of the form

ndy o gd™ly dy
X axn —+ kX dXT+ -+ k- 1Xd +kny X (4.9)
where k’s are constants and X is a function of x, is called Cauchy’s* homogeneous linear equation.
Such equation can be reduced to linear differential equation with constant coefficients, by putting

d
x=-¢e! or t =logx. ThenifD=E

dy dy dt dy 1 dy

Rzﬁldx E ; l.e. xa=Dy.

1A French mathematician Augustin-Louis Cauchy (1789-1857) who is considered as the father of modern
analysis and creator of complex analysis. He published nearly 800 reserch paper of basic importance. Cauchy
is also well known for his contribution to differential equation, in finite series, optics and elasticity.
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a2y dM1dy!"  1dy 1dMaylat  1dy 1d’ydt  1Mdzy ay !
dx2 dx xdt x2dt  xdt dt dx x2dt  xdtZ2dx x2 dt?2 dt
. 2d2y 3d3y
l.e. X — = — imi _— _ _
02 D(D —1)y. Similarly, x e D(D —1)(D —2)y and so on.

After making these substitution in (4.9), that results a linear equation with constat coefficients, which
can be solved as before.

,d?y dy

E le 4.13. Sol ——X— =

xample 4.13. Solve x v de +y =logx
Sol. Thisisa Cauchy’s homogeneous linear equation.

‘ dy ,d?y d

Putx =e ,ie. t=1 h —=D —=D(D -1 hereD = —

utx=e ,i.e.t=1logx,sot atxdX Y, X . ( )y, where m
Then given equation becomes

[DID—1)—D+1]y=tor (D—1)72y=t (4.10)

which is a linear equation with constant coefficients.
Its A.E.is (D —1)> =0whenceD =1,1.
J.C.F. =(c1 +cot)et.

AndP. I. =ﬁt =(1-D)t=(1+2D+3D*+ - )t =t+2
Hence the solution of (4.10) isy = (c1 + cot)et +t + 2.
Putt = logx or e' = x, we get
y = (c1 + c2logx)x + logx + 2 as the required solution of given equation.

pd?y  dy x
Example 4.14. Solve X W-’_ 4x (K+ 2y =e
Sol. Thisisa Cauchy’s homogeneous linear equation.
¢ dy ,d?y d
Putx =e ,i.e. t =logx, sothatxdT= Dy, x o2 D(D — 1)y, whereD = e

Then given equation becomes
[D(D —1)+4D +2]y =e® or (D2+3D +2)y =¢° (4.12)

which is a linear equation with constant coefficients.

Its A.E.isD?+3D +2=0whenceD = —1,—2.
S C.F. =ciet+ e~ = cix-1 + cox—2.

1 ‘ 1 | 1
And P.I. = ge = e¢ = _ ee
(D2 +3D +2) (D +1)(D+2) (D+1) (D+2)
1 g 1
“(DO+1)¢ “(D+2° " q
. 1 E 3 >
= et et eet dt — g2t et eet dt X = g Xe-2axdx.

D-a
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bl bl - ¢

=x-1 eXdx —x—2 e*xdx boet=x

= x~le¥ — x?(xe* — &)

— X—Zex
Hence the required solution of y = cix~1 + cox—2 + x—2¢*.
4.6 Legendre's linear equation
An equation of the form

nd"y nrd"ly dy
(ax+b) —Hk(@x+b) k(@ b kay = X (4.12)

where k’s are constants and X is a function of x, is called Legendre’s 2 homogeneous linear equation.
Such equation can be reduced to linear differential equation with constant coefficients, by putting

ax+b=¢e' or t =log(ax + h).

d dy dy dt d d
Thenifp = —, L = R _ B — 4o a4 —aDy.
dt dx dt d>ﬁT dt ax+b dx q T
dzy d " a dy —ar dy a_dMdy"dt 2  Mazy dy
_ = - -
dx?  dx g5 4 pdt (ax +b)2 dt  (ax+b)dt dt dx (ax+b)?2 dt2 dt
2d2y 2 3d3y

i.e. (ax+b) e a D(D —1)y. Similarly, (ax +b) P a D(D —-1)(D —2)y and so on.
After making these substitution in (4.12), that results a linear equation with constat coefficients.

d?y dy

2
Example 4.15. Solve (1 +X) W—’_ 1+ x)a+ y = 2sin(log(1 + x))

Sol. Thisisa Legendre’s homogeneous linear equation.

Putl+x =¢etie. t=log(l+x),
dy ,d?y d
sothat (1+x) =-=Dy and (1+x) —>-=D( —1)y, whereD = .

Then given equation becomes

D(D — 1)y + Dy +y = 2sin(t). = (D? + 1)y = 2sin(t) (4.13)
which is linear equation with constant coefficients.
Its A.E.isD?+ 1=0whence D = =*i. .. C. F. =cycos(t) + czsin(t).
AndP.I. =27 sin(t) = 2t — sin(t) = t ‘sin(t)dt = —t cos(t).
D2+1 2D

2An French mathematician Adrien Marie Legender (1752-1833) who made important contribution to num-
ber theory, special functions and calculus of variation.
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Hence the solution of (4.13) is y = ¢y cos(t) + c2sin(t) — tcos(t).

Putt =log(1 + x) we get

¢
y =cicos log(1+x) + 025|n log(1+x) — log(1+ x)cos(log(1 + x)) as the required solution of

given equation.

Exercise-IV

Que :1 Solve the following differential equation.

INDEX 4. HIGHER ORDER LINEAR DIFFERENTIAL EQUATION

2

,d?y  dy 3 2 3
1.x d_2_2XdT+2y:X ANs. CiX +Cx  +0.5x
d 3y d 2
3 2ay _ _1 _ _1 ;
2.X — X pIvEs +2y =10(X +x1) Ans . y = cix~* + x(c2 cos(log x) + c3 sin(log x))
X X
+5x + 2x-tlog x
2d?%y dy 4 4 1 4
3.x° o7 —2x v 4y =X Ans.y =cix +cx- +(0.2)x logx
,d?y dy 2 2 1 12
4.x dz_z 3x d—+4y =(1+x) Ans.y = (c1+clogx)x +7+2x+3x (logx)
i ¢
5.x_y—2x ly =x+x-2 Ans.y=01x2+czx4+llx2—l log x
QXZ 3 X
d d y 3 3
6. d_ZX* dx 1o =12x  logx Ans.y=cllogx+ﬁ2+2(logx)
,d?y dy 2 2 2 -
7.6+2) gz 6(5 + 2x) ax T 8y = 2(2x +5) Ans.y=(5+2) a6+2) +c5+29
q q —-(5+2%)
8. (2x + 32" — 2x+3)"Y — 12y — 6x ANS .y = C1(2X + 3)% + Ca(2X + )P — 2 (2x + 3)
dx2 dx 14
where a,b = ¥+, °'
,d?y d+y
9. (1+x) ——+ (1+x) —4 = 4cos(log(1 + x)) Ans. y = cicos(t) + casin(t) + 2t sin(t)
where t = log(1 + x)
2—2y d—y — 2 — 2 -2
10. (3x + 2) +3(3x + 2) —36y =3x*+4x+1 Ans.y=ci(3x+2)°+c2(3x + 2)
dx2 dx

Definition 4.16. Polar Co-ordinates: Angle 6 in polar co-ordinate system is directed angle, meaning

+155 [(3X +2)? log(3x + 2)]

angle can be positive or negative. Anticlockwise means positive, clockwise means negative.

In polar co-ordinate system, if r is constant then a circle can be drawn and if 6 is constant then a ray is

obtained.

P(r,0) =

P (—r,(2k + 1)176)
= P(r,(2km)

Advantage: Lesser things are required compared to cartesian co-ordinate system.

Disadvantage: In this system, same point has many co-ordinates.
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Definition 4.17. Polar Co-ordinates in R?
Let O be a fixed point in the plane, let O X be a fixed ray in the plane. Then, for every point P in the
plane,

i onecanfindr = 0suchthat OP =r and

ii one can find 8 € [0,2n] such that m«£POX = 6.

Here the ordered pair (r, 0) is called the polar co-ordinate of the point P. O and O X are called the pole
and the initial line respectively.

If (r, 0) is a polar co-ordinate of the point P, then (r, 2k + 6), (—r, T+ 6), (—r,(2k + 1)m6) are also polar
co-ordinates of the same point P for Vk € Z.
r is called the radius vector and 6 is called the angular co-ordinates of P.

4.7 Relation between Cartesian and Polar Co-ordinates

Let P(x,y) be a point in the cartesian co-ordinate plane. Take O as the pole and O X as the initial line.
Let P (r, 8) be the polar co-ordinate of P.

OP =|r|
—= OP2=r’
2 2 2
== (x-0) +(y-0) =r
o xttyior? (4.14)

Also, from the figure,

m«ZPOM =86 y
X
== cos@ = andsin6= -

== X=rcos@andy =rsin@ (4.15)
Example 4.18. Find the cartesian co-ordinates of the following polar points. Also plot the points
1027

2 21
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1 Here A(" 2, )

N‘ORNX ’recosey r§iné

.x= "2cosZ= "2 1! )andy— 2sinT= "2 1)
4 4 2
Sxky)=(11)
2 Here A(Z,%
Sr=260=¢
Now x _rcosf,y _rsinf
S.ox=2c0s™=2( 3)andy=25in£=2(l).
6 Z 6 2
Sxy)=( 3.
3 Here A(2,=7)
r=20=%
Nowx—rcosey—rsme
. X = 2C0s ”—2()andy 2sin =7 —2(——3)
Sxy) 8,
=(1,- 3).
4 Here A(—2, 7/
Sr=-20=
Nowx=rcosey rsiné . 1
JoXx=-2cos="=-2(,")andy = —2sin="= —2(— ,7).
4 2 4 2

Ly)=(= 2 2
Example 4.19. Find polar co-ordinates of following cartesian points.
1 (1,2
2 (°3,1)
3 (-°3,-1)
4 (—2,-2)
Sol.

1 Here (x,y) = (1, ): X =
Now cos@ = ¥ andsin@ = ¥.

1 1 i

..cosf = ,z_and sin@ = T Hence 6 = 4

1L,y=1Nowx?+y2=r2==>r2=1+1==>r="2_
y
/

(6 =(21) B

2Here(xy)—(K31) ==>x="3,y=1LNowx>+y?=r2==r?=3+1==>r=2.
Now cos@ =, andsin@ = Y
.C0s0 = —gfandsme leencee—%.

c (r, 0)=(2%).
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5

3Here(x,y)=(—"3,-1)==>x=—"3)y=—1LNowx?+y?=r?==r2=3+1==>r=2,
Now cos@ = " andsin@ = 7.

r ] r
c.cosO=—""2andsin@=—". Henceg="".
2 7 5

o () =(2, ).

4 Here (x,y)=(—2,—-2)==>x=-2,y= -2 Nowx? +y?=r2==r2=4+4==>r=2"2"
Now cos8 = * andsing = Y.
..cos0 = —_2; and sinezr—j:. ..cosO = —
2 2 2 2

(o= 2%)

and..sin6=— . Hence ® =

2

.-

1
2

Theorem 4.20. Find distance formula in polar co-ordinate system in R2,

Proof. Let A(r1,61) and (rz, 8,) are two points in polar co-ordinate systems.
The cartesian co-ordinates of A and B are A(r1cos6s,r1sin61), B(r.cos6.,rzsin6.). Now

q

AB = (r1cos8; —rc0s62)2 + (r1sinB; — r,sin6,)2
q

= rzlcos2 61 — 2r1r2c0s6:1c0s0; + rzzcos2 6, + rf sin®9; + rz2 sin® 8, — 2rir2sin0; sin6;

q

= r21+ rg — 2r1r2(cos 61 cos B, + sin B, sin 6y)

q
AB = r21 + r22 — 2r1rz cos(61 — 6,)

Theorem 4.21. Obtain the formula for the area of AABC in polar co-ordinate system.

Proof. Let A(r1,61),B(r2,62) and C(rs, 6s5) be the vertices of the AABC. Hence the cartesian co-
ordinate A,B and C are A(r1cos6,r1sin61), B(r2cos 6,12 sin 62) and C (r3 cos 63, 3 sin 65).

-rycosb; risinb; 1 -
AABC =1 rc0s6; rpsin6, 1 _
rscos@; rzsinf; 1

Theorem 4.22. Obtain the equation of line passing through A(r/ —1,61) and B(r2, 62).

Proof. The cartesian co-ordinates of A and B are A(ri1 cos6s,r1sin61), B(r2 cos6,,r.sin6). The carte-

sian equation of AB is
—_ X y 1-

_ X1 Y1 1 = 0
X2 Y2 1
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In polar co-ordinates, the equation of AB is,

- rcos@ rsin6 1 -

_rcos6; risin6; 1 _=0
r.cos@, rzsin6, 1

== (r, c0s61r;Sin B, — r1r, c0s B, SinB1) — (r cosOra sinB, —rra cos 6, sinB) + (rrycossin 61 —rry cos B sin6) =0
== 1 sin(@; — 61) —rrysin(@, —6) +rrysin(6, —6) =0
N sin(@, — 6,) _ sin(B. —6)  sin(6, — 6)

r I 2
N sin(6, — 82) _ sin(6 —6;) sin(6 — &)
B r N r r
is the polar equation of a line passing through A(ri, 61) and B (r2, 62). O

Theorem 4.23. Obtain the polar equation of aline in p — a form.

Proof. Let p be the perpendicular distance from the pole to a line L in the polar plane. Draw OM L

L,M € L. Let m£MOX = a. The polar co-ordinates of M is M (p, a).
Let P(r16) be a point on the line L other than M.

.. OP distance isr and mzZPOX = 6.
..Mm£ZPOM =6 —aora—6 = +60—a=|0— al. From the right-angled APOM,

oM
cos(£POM) _

OoP
== OM =OP cos(£6 —q)
== p=rcos(6—a) (. cosB = cos(—6))

which is the required equation. O

4.8 Deductions:

1 IfO €L, then P = 0. Hencercos(6 —a) =0. Thatisif poleison line L, then r cos(6 —a) =0 is
the equation of line passing through pole.

2 IfLL&,thena=0. Hence p = r cos(6 — 0).
.. p =rcosé.

3 IfL || &, then a= Z. Hence p = r cos(6 — ¥) = r sinO. Equation of line will be p = r sin6.

4 IfL= 07, then p = 0and a = 7-. Hence the equation of line will be r sin@ = 0.

Example 4.24. Prove that the points (6, 0),(3, %) and (—3, &) are non-collinear.
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Sol. The polar equation of a line passing through (6, 0),(3, Z) and (—3, 13) is,

"~ rcos® rsin@ 1 6(%) 6(9; 1.
—ricos risinG 1-=" 3() 3(7) -
rocos@, rpsinf, 1 ‘_3(12) _3(;) 1_
- b6 0 1.
= 3 37 1
3 : -
-3 —373 1
-6 0o 1-
NS
0 0o 2
=2(18—2)
=18"3
[=0

.". the given points are non-collinear

Example 4.25. Obtain the polar co-ordinates of the foot of
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