GANAPATI INSTITUTE OF ENGINEERING AND TECHNOLOGY (POLYTECHNIC)
Mathasahi , Jagatpur , Cuttack - 754200

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

LECTURENOTES
ON

Programming With C++

Preparedby:
Er. Smruti Ranjan Pattnaik
Dept. of Computer Science & Engineering

Module-1:

LECTURE-1

Programmerswriteinstructionsinvariousprogramminglanguagestoperformtheircomputation tasks such
as:

(Machine level Language

(i) Assembly level Language

(i) High level Language

Machine level Language:

Machine code or machine language is a set of instructions executed directly by a computer's central
processing unit (CPU). Each instruction performs a very specific task, such as a load, a jump, or an
ALU operation on a unit ofdata in a CPU register or memory. Everyprogramdirectly executed bya
CPU is made up of a series of such instructions.

Assembly level Language :

Anassemblylanguage(orassembler language) isa low-levelprogramming language foracomputer,
orother programmable device, inwhichthere is averystrong (generallyone-to-one) correspondence
between the language and the architecture’s machine code instructions. Assembly language is
converted into executable machine code by a utility program referred to as an assembler; the
conversion process is referred to as assembly, or assembling the code.

High level Language :

High-level language is any programming language that enables development of a program in much
simpler programming context and is generally independent of the computer's hardware architecture.
High-level language has a higher level of abstraction from the computer, and focuses more on the
programming logic rather thanthe underlying hardware components suchas memoryaddressing and
register utilization.

The first high-level programming languages were designed in the 1950s. Now there are dozens of
different languages, including Ada , Algol, BASIC, COBOL, C, C++, JAVA, FORTRAN, LISP,
Pascal, and Prolog. Such languages are considered high-level because they are closer to human
languages and farther from machine languages. In contrast, assembly languages are considered low-
level because they are very close to machine languages.

Thehigh-levelprogramminglanguagesarebroadlycategorizedintotwocategories:

(iv) Procedure oriented programming(POP)language.
(v) Object oriented programming(OOP)language.

P.T.C

In the procedure oriented approach, the problem is viewed as sequence of things to be done such as
reading , calculation and printing.

Procedure oriented programmingbasically consist of writing alistof instruction oractionsfor the
computer to follow and organizing these instruction into groups known as functions.

Mainprogram

Y

Function-1

Function-2

Function-3

The disadvantage of the procedure oriented programming languagesis:
1. Global data access

2.

3. No data hiding

O OB CONIEES

It doesnot model real world problem verywell

Globaldata Globaldata
Function-1 Function-2 Function-3
Localdata Localdata Localdata

Emphasisisondoing things(algorithm)
Largeprogramsaredividedintosmallerprogramsknownas functions.
Mostofthefunctionsshareglobaldata
Datamoveopenlyaround thesystemfromfunctiontofunction
Functiontransformsdata fromoneformtoanother.
Employstop-downapproachinprogramdesig

P.T.C

“Object oriented programming as an approach that provides a way of modularizing programs by
creating partitioned memory area for both data and functions that can be used as templates for
creating copies of such modules on demand”.

ObjectA ObjectB

Data Data

Communication
A\ 4 \4

Functions [¢ Functions
L X

A
A

ObjectC
N4

Functions
A

Data

Features of the ObjectOriented programming

Emphasis isondoingrather thanprocedure.
programsaredividedintowhatareknownasobjects.
Datastructuresaredesignedsuchthattheycharacterize the objects.
Functionsthatoperateonthedataofanobjectaretiedtogetherinthedata structure.
Dataishiddenandcan’tbeaccessed byexternalfunctions.
Objectsmaycommunicate witheachotherthroughfunctions.
Newdataandfunctionscanbeeasilyadded.

Followsbottom-upapproach inprogramdesign.

OIS ol COIN =

P.T.C

Objects

Classes
Dataabstractionandencapsulation
Inheritance

Polymorphism

Dynamicbinding
Messagepassing

s eZRC eSS RIS o

Objects are the basic run-time entities in an object-oriented system. They may represent a person, a
place, a bank account, a table of data or any item that the program must handle.

The fundamental idea behind object oriented approach is to combine both data and function
into a single unit and these units are called objects.

The term objects means a combination of data and program that represent some real word
entity. For example: consider an example named Amit; Amit is 25 years old and his salary is 2500.
The Amit may be represented in a computer programas an object. The data part of the object would
be (name: Amit, age: 25, salary: 2500)

The program part of the object may be collection of programs (retrive of data, change age,
change of salary). In general even any user—defined type-such as employee may be used. In the Amit
object the name, age and salary are called attributes of the object.

Object: Student STUDENT

DATA Total
Name
Date-of-birth
Marks Average

FUNCTIONS
Total
Average Display
Display |

CLASS:

Agroupofobjectsthatsharecommonpropertiesfordatapartandsomeprogrampartare collectively
called as class.

In C ++ a class is a new datatype that contains member variables and member functionsthat
operate on the variables.

P.T.C

Abstraction refers to the act of representing essential features without including the back
ground details or explanations. Classes use the concept of abstraction and are defined as size, width
and cost and functions to operate on the attributes.

The wrapping up of data and function into a single unit (called class) is known as
encapsulation. The data is not accessible to the outside world and only those functions which are
wrapped intheclasscanaccess it. These functions providethe interface betweentheobjectsdataand the
program.

INHERITENCE:

Inheritance is the process by which objects of one class acquire the properties of another
class. In the concept of inheritance provides the idea of reusablity. This mean that we can add
additionalfeaturesto anexisting classwith out modifying it. Thisispossible bydesining a new class will
have the combined features of both the classes.

Polymorphism means the ability to take more than one form. An operation may exhibit different
instance. The behaviour depends upon the type of data used in the operation.

A language featurethat allowsa functionoroperatorto be given morethanone definition. The types of
the arguments with which the function or operator is called determines which definition will be used.

Overloadingmaybeoperatoroverloadingorfunctionoverloading.
It is able to express the operation of addition by a single operater say ‘+’. When this is possible you
use the expressionx+ yto denotethe sumofxand y, for manydifferent types ofx and y; integers , float

and complexno. Youcanevendefine the + operation for two strings to meanthe concatenation of the
strings.

DYNAMIC BINDING:

Binding refers to the linking of a procedure call to the code to the executed inresponse
to the call. Dynamic binding means the code associated with a given procedure call is not known
untill the time of the call at run-time. It is associated with a polymorphic reference depends upon the
dynamic type of that reference.

P.T.C

MESSAGE PASSING :

Anobjectorientedprogramconsistsofasetofobjectsthatcommunicatewitheach
other.

A message for an object is a request for execution of a procedure and therefore will
invoke a function (procedure) in the receiving object that generates the desired result. Message
passing involves specifying the name of the object, the name of the function (message) and
information to be sent.

Employee. Salary(name)

Object Information
Message

P.T.C

Oopoffers severalbenefits to boththe programdesigner and the user. Object-oriented contributes to
the solution of many problems associated with the development and quality of software products.The
principal advantages are :

= Gn O o=

Through inheritance we can eliminate redundant code and extend the use of existing
classes.

We can build programs from the standard working modules that communicate with one
another, rather than having to start writing the code fromscratch. This leads to saving of
development time and higher productivity.
Thisprincipleofdatahidinghelpstheprogrammer to build secureprogramsthat can’t be
invaded by code in other parts of the program.
Itispossibletohavemultipleinstancesofanobjecttoco-existwithoutanyinterference.
Itiseasytopartitiontheworkinaprojectbasedonobjects.
Object-orientedsystemscanbeeasilyupgradedfromsmalltolargesystems.
Messagepassingtechniquesforcommunicationbetweenobjectsmakestheinterface
description with external systems much simpler.
Softwarecomplexitycanbeeasilymanaged.

The most popular applicationofoops upto now, has been inthe area ofuser interface

design such as windows. There are hundreds of windowing systems developed using oop
techniques.

Real business systems are often much more complex and contain many more objects

with complicated attributes and methods. Oop is useful in this type ofapplications because it
can simplify a complex problem. The promising areas for application of oop includes.

Real-Time systems.

Simulationandmodeling
Objectorienteddatabases.
Hypertext,hypermediaandexpertext.
Alandexpertsystems.

Neuralnetworksand parallelprogramming.
Dicisionsupportandofficeautomationsystems.
CIM/CAM/CADsystem.

O N g & W

P.T.C

Basics of C++

C ++ is an object oriented programming language, C ++ was developed by Jarney
Stroustrup at AT & T Bell lab, USA in early eighties. C ++ was developed from ¢ and simula 67
language. C ++ was early called ‘C with classes’.

C++ Comments:

C++ introduces a new comment symbol //(double slash). Comments start with a
double slashsymboland terminate atthe end ofline. Acomment maystart anywhere inthe line and what
ever follows till the end of line is ignored. Note that there is no closing symbol.

The double slash comment is basically a single line comment. Multi line comments can be
written as follows:

/lthisisanexampleof

[[c++ program

/lthankyou
Theccommentsymbols/*....*/arestillvalidandmoresuitableformultilinecomments.

[*thisis anexample ofc++ program*/

Output Operator:

The statement cout <<”Hello, world” displayed the string with inquotesonthe screen. The identifier
cout can be used to display individualcharacters, strings and even numbers. It is a predefined object
that corresponds to the standard output stream. Stream just refers to a flow of data and the standard
Output streamnormally flows tothe screendisplay. The cout object, whose properties are defined in
iostream.h represents that stream. The insertion operator << also called the ‘put to’ operator directs
the information on its right to the object on its left.

Return Statement:

InC++main()returnsanintegertypevaluetotheoperatingsystem.Thereforeeverymain (
) inC++shouldendwithareturn(0) statement,otherwiseawarningor anerrormightoccur.

Input Operator:

The statement

cin>>numberl;
is an input statement and causes. The programto wait for the user to type in a number. The number
keyed in is placed in the variable numberl. The identifier cin is a predefined object in C++ that
corresponds to the standard input stream. Here this stream represents the key board.

The operator >> is known as getfrom operator. Itextracts valuefrom the
keyboardand assigns it to the variable on its right.

P.T.C

Cascading Ofl/ OOperator:

cout<<”’sum="<<sum<<"\n";
cout<<’sum="<<sum<<"\n"<<"average="<<average<<’\n”;
cin>>numberl>>number2;

Structure Of A Program:

Probably the best wayto start learning a programming language is bywriting a program. Therefore,
here is our first program:
[ImyfirstprograminC++

#include <iostream>
usingnamespacestd;

int main()
{

cout<<"HelloWorld!";

return 0;
}
Output:-HelloWorld!
The first panel shows the source code for our first program. The second one shows the result of the
program once compiled and executed. The way to edit and compile a program depends on the
compiler you are using. Depending on whether it has a Development Interface or not and on its
version. Consult the compilers section and the manual or help included with your compiler if you
have doubts on how to compile a C++ console program.
The previous program is the typical program that programmer apprentices write for the first time,and
its result is the printing on screen of the "Hello World!" sentence. It is one of the simplest programs
that can be written in C++, but it already contains the fundamentalcomponents that every C++
programhas. We are going to look line by line at the code we have just written:
/Imyfirst programin C++
This isa comment line. Alllinesbeginning withtwo slashsigns(//)areconsidered commentsand do not
have any effect on the behavior of the program. The programmer can use them to include short
explanations or observations within the source code itself. In this case, the line is a brief description
of what our program is.
#include<iostream>
Lines beginning with a hash sign (#) are directives for the preprocessor. They are not regular code
lines with expressions but indications for the compiler's preprocessor. In this case the directive
#include<iostream> tells the preprocessor to include the iostream standard file. This specific file
(iostream) includes the declarations of the basic standard input-output library in C++, and it is
included because its functionality is going to be used later in the program.
usingnamespace std;
All the elements of the standard C++ libraryare declared within what is called a namespace, the
namespace with the name std. So in order to access its functionality we declare with this expression
that we will be using these entities. This line is very frequent in C++ programs that use the standard
library, and in fact it will be included in most ofthe source codes included in these tutorials.
intmain()
This line corresponds to the beginning of the definition of the main function. The main function isthe
point by where all C++ programs start their execution, independently of its location within the source
code. It does not matter whether there areother functions with other names defined before or after it —
the instructions contained withinthis function's definitionwillalways be the first onesto be

10

P.T.C

executedinanyC++program.Forthat samereason, it isessentialthat allC++programshavea main
function.

The word main is followed in the code by a pair of parentheses (()). That is because it is a function
declaration: In C++, what differentiates a function declaration from other types of expressions are
theseparenthesesthat follow itsname.Optionally, theseparenthesesmayenclosea list ofparameters
within them.

Right after these parentheses we can find the body of the main function enclosed in braces ({}).What
is contained within these braces is what the function does when it is executed.

cout<<"Hello World!"*;

This line is a C++ statement. A statement is a simple or compound expression that can actually
produce some effect. Infact, this statement performs the onlyactionthat generates a visible effect in
our first program.

cout represents the standard output stream in C++, and the meaning of the entire statementis toinsert
asequenceofcharacters(inthiscasetheHello World sequenceofcharacters) intothestandard output
stream (which usually is the screen).

cout is declared in the iostream standard file within the std namespace, so that's why we needed to
include that specific file and to declare that we were going to use this specific namespace earlier in
our code.

Notice that the statement ends with a semicolon character (;). This character is used to mark the end
of the statement and in fact it must be included at the end of all expression statements in all C++
programs(oneofthe most commonsyntaxerrorsis indeedto forgetto includesomesemicolonafter a
statement).

return 0;

The return statement causes the main function to finish. return may be followed bya return code (in
our example is followed by the return code 0). A return code of O for the main function is generally
interpreted as the program worked as expected without any errors during its execution. This is the
most usual way to end a C++ console program.

You may have noticed that not all the lines of this program perform actions when the code is
executed. There were lines containing onlycomments (those beginning by//). There were lines with
directives for the compiler'spreprocessor (those beginning by #). Then there were lines that began the
declaration of a function (in this case, the main function) and, finally lines with statements (like the
insertion into cout), which were all included within the block delimited by the braces ({}) of the
main function.

The program has been structured in different lines in order to be more readable, but in C++, we do
not have strict rules on how to separate instructions in different lines. For example, instead of

int main()

{
cout<<"HelloWorld!"; return
0;

}

Wecouldhave written:

int main()

{

cout<<"HelloWorld!";

return O;

}

Allinjustonelineandthiswouldhavehadexactlythesamemeaningasthepreviouscode.

In C++, the separation between statements is specified with an ending semicolon (;) at the end of
each one, so the separation in different code lines does not matter at all for this purpose. We
canwritemanystatementsperlineor writeasinglestatementthat takesmanycodelines. Thedivision of

11

P.T.C

codein differentlinesservesonly tomakeitmorelegibleandschematicfor thehumansthatmay read it.

Let usaddanadditionalinstructiontoourfirstprogram:
/ImysecondprograminC++

#include <iostream>

usingnamespacestd;

int main()

{
cout<<"HelloWorld!";
cout<<"I'maC++program";
return O;

by

Output:-HelloWorld!I'maC++ program

In this case, we performed two insertions into cout in two different statements. Once again, the
separation in different lines of code has been done just to give greater readability to the program,
since main could have been perfectly valid defined this way:

int main()

{

cout<<"HelloWorld!";

cout <<"I'maC++program";

return O;

¥

Wewerealso freetodividethecodeintomorelinesifweconsidered it moreconvenient: int main

0
{

cout <<"Hello
World!";cout<<"I'maC++pro
gram"; return 0O;

Andtheresultwouldagainhavebeenexactlythesameas inthepreviousexamples.

Preprocessor directives (those that begin by #) are out of this general rule since they are not
statements. They are lines read and processed by the preprocessor and do not produce any code by
themselves. Preprocessordirectives must be specified intheir ownline and do not have to end witha
semicolon (;).

e Includefiles

e Classdeclaration

e Classfunctions, definition
e Mainfunctionprogram

#include<iostream.h>

classperson

12

P.T.C

{

charname[30];

int age;

public:
voidgetdata(void);
voiddisplay(void);

voidperson::getdata(void)

{

cout<<’entername”;
cin>>name;
cout<<’enter age”’;
cin>>age;

}

voiddisplay()
{

cout<<”\nname:”’<<name;
cout<<”\n age:”<<age;

}

intmain()

{

person p;
p.getdata();

p.display();
return(0);

}

13

P.T.C

Thesmallestindividual unitsin programareknownastokens.C++hasthefollowing

tokens.
. Keywords
ii. Identifiers
iil. Constants
iv. Strings
v. Operators

The keywords implement specific C++ language feature. Theyare explicitlyreserved
identifiers and can’t be used as names for the program variables or other user defined program

elements. The keywords not found in ANSI C are shown in red letter.

Asm double new switch
Auto else operator template
Break enum private this
Case extern protected throw
Catch float public try

Char for register typedef
Class friend return union
Const goto short unsigned
Continue if signed virtual
Default inline sizeof void
Delete long struet while

Identifiers refers to the name of variable ,functions, array,class etc. created by programmer.

Eachlanguage has its own rule for naming the identifiers.

Thefollowingrulesarecommonfor bothCandC++.

14

P.T.C

Onlyalphabeticchars,digitsandunder scoreare permitted.
Thenamecan’tstartwitha digit.
Uppercaseandlowercaselettersare distinct.
Adeclaredkeywordcan’tbeusedasavariablename.

£ Wi =

INANSICthemaximumlengthofavariableis32charsbutinc++thereisnobar.

15 P.T.C

BASIC DATATYPES IN C++

C++DataTypes
Y
Userdefinedtype Builtintypes Derivedtype
Structure Array
Union Function
Class pointer
enumeration
\ 4
Integraltype void Floatingpoint
int char float double

Both C and C++ compilers support all the built in types. With the exception of void the basic
datatypes may have several modifiers preceding them to serve the needs of various situations. The
modifiers signed, unsigned, long and short may applied to character and integer basic data types.
However the modifier long may also be applied to double.

DatatypesinC++canbeclassifiedundervarious categories.

char
usigned
sgnedchar
int
unsignedint
singedint

shortint
long int

1 -128to-127

1 0to265

1 -128to127

2 -32768t032768

2 0to65535

2 -32768t032768

2 -32768t032768

4 -2147483648t02147483648

16

P.T.C

signedlongint 4 -2147483648t02147483648

unsignedlongint 4 0to4294967295

float 4 3.4E-38t03.4E+38
double 8 1.7E -308to1.7E+308
longdouble 10 3.4E-4932t01.1E+4932

Thetypevoidnormallyusedfor:

1) Tospecifythereturntypeoffunctionwhen itisnotreturningany value.
2) Toindicateanemptyargumentlisttoafunction.

Example:
Voidfunction(void);

Anotherinterestinguseofvoid isinthedeclarationofgeneticpointer

Example:
Void*gp;

Assigning any pointer type to a void pointer without using a castis allowedin both C and ANSI C. In

ANSI C we can also assign a void pointer to a non-void pointer without using a cast to non void
pointer type. This is not allowed in C ++.

Example:
void*ptrl;
void*ptr2;
Arevalidstatement inANSICbutnot inC++.Weneedto useacastoperator.

ptr2=(char *)ptri;

USER DEFINED DATA TYPES:

We have used user defined data types such as struct,and union in C. While these more features have
beenaddedtomakethemsuitableforobjectorientedprogramming.C++alsopermitsustodefine

17

P.T.C

anotheruserdefineddatatypeknownasclasswhichcanbe used just likeanyotherbasicdatatypeto declare a
variable. The class variables are known as objects, which are the central focus of oops.

An enumerated data type is another user defined type which provides a way for
attaching names to number, these by increasing comprehensibility of the code. The enum keyword
automatically enumerates a list of words by assigning them values 0,1,2 and soon. This facility
provides an alternative means for creating symbolic.

Example:

enumshape{circle,square,triangle}
enumcolour{red,blue,green,yellow}
enum position {off,on}

The enumerated data types differ slightly in C++ when compared with ANSI C. In C++, the
tag names shape, colour, and position become new type names. That means we can declare new
variables using the tag names.

Example:

Shapeellipse;//ellipseisoftype shape
colourbackground;// background isoftypecolour

ANSI C defines the types of enums to be ints. In C++,each enumerated data type retains its
ownseparatetype. This meansthat C++doesnot allowan intvalueto beautomaticallyconvertedto an
enum.

Example:

colour background =blue; //vaid
colourbackground=7;//errorinc++
colour background =(colour) 7;//ok
Howeveranenumerated valuecanbeusedinplaceofan intvalue.
Example:

intc=red;//valid, colourtypepromotedtoint

By default, the enumerators are assigned integer values starting with O for the first
enumerator, 1 for the second and so on. We can also write

enumcolor{red,blue=4,green=8};

enum color {red=5,blue,green};

18

P.T.C

C++also permitsthecreationofanonymousenums(i.e,enumswithouttagnames)
Example:
enum{off,on};
HereoffisOandonisl.theseconstantsmaybereferencedinthesamemanner asregular constants.
Example:
intswitch-1=off;
intswitch-2=on;

ANSICpermitsanenumdefinedwithinastructureoraclass,buttheenumis globally visible. In
C++ an enum defined with in a class is local to that class.

19 P.T.C

Therearetwowaysofcreating symbolicconstantsin c++.

1. usingthequalifier const.
2. definingasetofinteger constantsusingenumkeywords.

InbothCandC++,any valuedeclared asconstcan’tbemodifiedbytheprograminany way.
InC++,wecanuseconstinaconstantexpression.Suchas

constintsize=10;
charname (size) ;

ThiswouldbeillegalinC.constallowsustocreatetypedconstantsinsteadofhavingtouse#defmeto
createconstantsthathavenotypeinformation.

constsize=10;
Means

constintsize =10;

C++requiresaconsttobeinitialized. ANSICdoesnotrequireaninitializer,ifnoneisgiven, it
initializestheconsttoO.

InC++constvaluesarelocalandinANSICconstvaluesareglobal. Howevertheycanbemadelocal
madelocalbydeclaringthemasstatic. InC++ifwewanttomakeconstvalueasglobalthendeclareasextern
storageclass.

Ex:external const total=100; Another method
ofnamingintegerconstantsisasfollows:-

enunyx,y,z};

INANSICCallthevariablewnhichistobeusedinprogramsmustbedeclaredatthebeginningofthe
program.ButinC++wecandeclarethevariablesanywhoseintheprogramwhereitrequires. Thismakesthe
programmucheasiertowriteand reducestheerrorsthatmay becausedbyhaving to scan back andforth. It
alsomakestheprogrameasiertounderstandbecausethevariablesaredeclaredinthecontextoftheiruse.

Example:
main()
{
floatx,average;
floatsum=0;

20

P.T.C

for(inti=1;i<5;i++)
t

cin>>x;
sum=sum-+x
}
float average;
average=sum/x;
cout<<average;

REFERENCE VARIABLES:

C++interfaces a new kind of variable known as thereference variable. A references variable
provides an alias.(alternative name) for a previouslydefined variable.For example,if we makethe
variablesumareferencetothevariabletotal thensumandtotalcanbeusedinterchangeablytorepresent the
variuble.

Areferencevariableiscreatedasfollows:

Synatx:Datatype&reference—name=variablename;

Example:

floattotal=1500;
float&sum=total;

Heresumisthealternativenameforvariablestotal,boththevariablesrefertothesamedataobjectinthe memory.

Areferencevariablemustbeinitializedatthetimeofdeclaration.
NotethatC++assignsadditionalmeaning tothesymbol &here&isnot anaddressoperator
.Thenotationfloat&meansreferencetofloat.
Example:
intn[10];
int&x=n[10];
char&a="\n’;

21

P.T.C

OPERATORS IN C++:

C++hasarichsetofoperators.AllCoperatorsarevalidinC++also.Inaddition.C++
introducessomenewoperators.

<< insertionoperator
>> extractionoperator

scoperesolutionoperator

* pointertomemberdeclarator
* pointertomemberoperator
* pointertomemberoperator

Delete memoryreleaseoperator

Endl linefeedoperator

New memoryallocationoperator

Setw fieldwidth operator

LikeC,C++isalsoablock-structuredlanguage.Block-structuredlanguage.Blocksand
scopes can be used in constructing programs. We know same variables can be declared in different
blocksbecausethevariablesdeclaredinblocksarelocaltothatfunction.

BlocksinC++areoftennested.

Example:
{
Intx=10;
{ <
Intx=1; Block2
............... Blockl
}
}

Block2containedinblockl.Notethatdeclarationinaninnerbiockhidesadeclarationofthe
samevariableinanouterblockandthereforeeachdeclarationofxcausesittorefertoadifferentdataobject.
Withintheinnerblockthevariablexwillrefertothedataobjectdeclaredtherein.

22

P.T.C

InC,theglobalversionofavariablecant beaccessed fromwithintheinnerblock.
C++resolvesthisproblembyintroducinganewoperator:: calledthescoperesolutionoperator.Thiscanbe
usedtouncoverahiddenvariable.

Syntax: ::variable-name;

Example:
#include<iostrcam.h>
int m=10;
main()

{

intm=20;

{

intk=m;

intm=30;

cout<<’wearein innerblock”;
cout<<"k="'<<k<<endl;
cout<<""m=""<<m<<endl;
cout<<'"::m="'<<::m<<endl;

}
cout<<\nweareinouterblock\n”;
cout<<"'m="'<<m<<endl;
cout<<':: m=""<<:: m<<endl;

}

MemoryManagementOperator

Cusesmallocandcallocfunctionstoallocatememorydynamicallyatruntime.Similarlyitusesthefunctions
Free()tofreedynamicallyallocatedmemory.Weusedynamicallocationtechniqueswhenitisnotknownin
advancehowmuchofmemoryspaceasneeded.

C++alsosupportthosefunctionsit also definestwo unary operatorsnewanddeletethat
performthetaskofallocatingandfreeingthememoryinabetterandeasierway.

Thenewoperatorcanbeusedtocreateobjectsofanytype.Syntax: pointer-
variable =new datatype;

Example:
p=newint;g=newint;

Wherepisapointeroftypeintandgisapointeroftypefloat.
int*p=newint;
float*p=newfloat;
Subsequently,thestatements
*p=25;
23 P.T.C

Joy— .
q=7.5;
Assign25tothenewlycreatedintobjectand?.5tothefloatobject. Wecanalsoinitializethememory
usingthenewoperator.
Syntax:
int*p=ne\vint(25);
float*g =new float(7.5);

newcanbeusedtocreateamemoryspaceforanydatatypeincludinguserdefinedsuchas
arrays,structures,andclasses. Thegeneralformforaone-dimensionalarrayis:

pointer-variable=newdatatypes[size];
createsamemoryspace foranarrayofl0integers.

Ifadataobjectisno longerneeded, itisdestroyedtoreleasethememoryspaceforreuse.

Syntax:deletepointer-variable;

Example:
deletep;
deleteq;

Ifwewanttofreeadynamicallyallocatedarray,wemustusethefollowing
formofdelete.

delete[size] pointer-variable;
or

delete[]pointervariable;

Manipulatorsareoperatorthat areusedto format the data display. The mostcommonlymanipulatorsare

endlandsetw.
TheendImanipulator,whenusedinanoutputstatement,causesalinefeedtobeinsert. (justlike\n)

Example:
cout<<"m="<<m<<endl;

cout<<’n="<<n<<endl;
cout<<’p="<<p<<endl;
Ifweassumethevaluesofthevariablesas2597,14and175respectively
m=2597; n=14;
p=175
It waswantto print all nosinright justified wayusesetwwhichspecifyacommon field width
forallthenos.

Example: cout<<setw(5)<<sum<<endl;
cout<<setw(10)<<"basic’<<setw(10<<basic<<endl;
Cout<<setw(10)<<’allowance”<<setw(10<<allowance<<endl;

cout<<setw(10)<<"total="<<setw(10)<<total;

24

P.T.C

CONTROLSTRUCTURES:

Likec,c++,supportsalithebasiccontrolstructuresandimplementsthemvariouscontrolstatements.

Theifstatement:

Theifstatement isimpklementedintwoforms:
1 simpleifstatement
2. if. . .elsestatement

Simpleifstatement:

if(condition)

{

Action;

¥

If..elsestatement

If(condition)
Statment1
Else

Statement?2

Theswitchstatement

This isa multiple-branching statement where,basedona condition,thecontrolistransferredtooneofthe many

possiblepoints;

25

P.T.C

Switch(expr)
{

casel:
actionl;
break;

case2:
action2;

break;

default:

message

¥

Thewhilestatement:

Syn:While(conditio

n)
{

Stements

26

P.T.C

Thedo-whilestatement:

Syn:

do

{

Stements

Jwhile(condition);

Theforloop:
for(expressionl;expression2;expression3)
{

Statements;

Statements;

¥

27

P.T.C

FUNCTION IN C++:

Themain()Functon;
ANSIdoesnotspecifyanyreturntype forthe main()functionwhichisthestartingpoint fortheexecution
ofaprogram.Thedefinitionofmain()is:-

main()

{

/Imainprogramstatements

¥

Thisispropertyvalidbecausethemain()inANSICdoesnotretumanyvalue. InC+themain()returnsavalueof
typeinttotheoperatingsystem. Thefunctionsthathavearetumvalueshouldusetheretumstatementforterminating.
Themain()functioninC++isthereforedefinedasfollows.

int main()

return(0)

Sincethereturntypeoffunctionsisintbydefault,thekeywordintinthemain()headeris optional.

To eliminate the cost of calls to small functions C++ proposes a new feature called inline function.
An inline function is a function that is expanded inline when it is invoked .That is the compiler
replaces the function call with the corresponding function code.

Theinlinefunctionsaredefinedas follows:-

inlinefunction-header

{

functionbody;

Example: inlinedoublecube(doublea)
{
return(a*a*a);
}
Theaboveinlinefunctioncanbeinvokedbystatementslike
c=cube(3.0);
d=cube(2.5+1.5);
remember that the inline keyword merely sends a request, not a command to the compliler. The
compiler mayignorethisrequest ifthe functiondefinitionistoo longortoocomplicatedandcompile the
function as a normal function.
Someofthesituationswhereinlineexpansionmaynotworkare:
1. Forfunctionsreturningvaluesifaloop,aswitchor agotoexists.

28

P.T.C

2. forfunctionsnotreturningvalues,ifareturnstatementexists.
3. iffunctionscontainstaticvariables.
4. ifinlinefunctionsarerecursive,.
Example:
#include<iostream.h>
#include<stdio.h>
inlinefloatmul(floatx, floaty)

{
return(x*y);
}
inlinedoublediv(doublep.doubleq)
{
return(p/q);
}
main()
{
floata=12.345;
float b=9.82;
cout<<mul(a,b)<<endl;
cout<<div(a,b)<<endl;
}
output:-
121.227898
1.257128

C++ allows us to call a function with out specifying all its arguments.In such cases, the
function assigns a default value to the parameter which does not have a matching aguments in the
function call.Default values are specified when the function is declared .The compiler looks at the
prototype to see how many arguments a function uses and alerts the program for possible default
values.

Example:floatamount(floatprinciple,intperiod,floatrate=0.15);

The default value is specified in a manner syntactically similar to a variable
initialization . The above prototype declares a default value of 0.15 to the argument rate. Asubsequent
function call like

value=amount(5000,7);//oneargumentmissing
passesthevalueof5000toprincipleand7toperiodandthenletsthefunction,usedefaultvalueof
0.15 forrate.

Thecall:-value=amount(5000,5,0.12);

/Inomissingargumentpassesanexplicitevalueof0.12rate.

One important point to note is that only the trailing arguments can have default values. That is, we
must add default from right to left .\WWe cannot provide a default to a particular argument in themiddle
of an argument list.

Example:-intmul(int i, int j=5,intk=10);//illegal int

mul(int i=0,intj,intk=10);//illegal int
mul(int i=5,int j);//illegal
intmul(inti=2,intj=5,intk=10);//illegal

Defaultargumentsareusefulinsituationwhosesomeargumentsalwayshavethesomevalue.
Forexample,bankinterestmayretainthesameforallcustomers foraparticularperiodofdeposit.

29

P.T.C

Example:

#include<iostream.h>
#include<stdio.h>
mainQ
{
floatamount;
float value(float p,int n,float r=0.15);
voidprintline(charch="*’,intlen=40);
printline();amount=value(5000.00,5);
cout<<"\nfinalvalue="<<amount<<endl; printline(‘=");
/[functiondefinitions
floatvalue(floatp,intn,float r)
{

float si;

si=(p*n*r)/100;

return(si);

}

voidprintline (charch,intlen)
{
for(inti=l;i<=len;i++)
cout<<ch<<endl;

}

output:-

*khkkhkkkhkhkkkikhkkkikhkkikkiikkx fi n al

value=10056.71613

Advantageofprovidingthedefaultargumentsare:
1. Wecanusedefaultargumentstoaddnewparameterstotheexistingfunctions.
2. Default argumentscanbeusedtocombinesimilarfunctionsintoone.

CONST ARGUMENT:-

InC++, anargument to a functioncan be declared asunit asconst asshown
below.

int strlen(const char *p);
intlength(conststring&s);
The qualifier const tells the compiler that the function should not modify the argument .the
compiler willgenerate an error when this condition is violated . This type ofdeclaration is significant
only when we pass arguments by reference or pointers.

30

P.T.C

Overloading refers to the use of the same thing for different purposes . C++ also
permits overloading functions .This means that we can use the same function name to creates
functions that perform a varietyof different tasks. This is known as function polymorphism in oops.

Using the concepts of function overloading , a family of functions with one function
name but with different argument lists in the functions call .The correct function to be invoked is
determined by checking the number and type of the arguments but not on the function type.

Forexampleanoverloadedadd()functionhandlesdifferenttypesofdataasshown
below.

//Declaration

intadd(inta,intb);//prototypel

int add (int a, int b, int c); //prototype 2
double add(double x, double y); /prototype 3
doubleadd(doublep,doubleq);//prototyped

/[functioncall

cout<<add(5,10); //uses prototype 1

cout<<add(15,10.0); //uses prototype 4

cout<<add(12.5,7.5);//usesprototype3

cout<<add(5,10,15); //uses prototype 2

cout<<add(0.75,5); //uses prototype 5
A function call first matches the prototype having the same no and type of arguments and then calls
the appropriate function for execution.

Thefunctionselectioninvokesthefollowing steps:-

a) Thecompiler first triestofindanexact matchinwhichthetypesofactual arguments
are the same and use that function .

b) Ifanexactmatchisnotfoundthecompilerusestheintegralpromotionstotheactual arguments such as

char to intfloat
to double
tofindamatch
c)When either of them tails ,the compiler tries to use the built in conversions to the actual
arguments and them uses the function whose match is unique . If the conversion is possible to have
multiple matches, then the compiler will give error message.

Example:
long square (long n);
doublesquare(doublex);
Afunctioncallsuchas:- square(l0)

Will causean errorbecauseintargumentcan beconverted toeitherlongor double
.There by creating an ambiguous situation as to which version of square()should be used.

31

P.T.C

PROGRAM

#include<iostream.h>i
ntvolume(double,int);
double volume(double , int);
doublevolume(longint,int,int);
main()
{
cout<<volume(10)<<endl;
cout<<volume(10)<<endl;cout<<volume(10)<<endl;
}
intvolume(inis)

{

return(s*s*s);//cube

doublevolume(doubler,inth)

{
return(3.1416*r*r*h);//cylinder

}

longvolume(longint 1,intb,inth)

return(1*b*h);//cylinder
}

output:-1000
157.2595
112500

32

P.T.C

Module-2:

Class is a groupofobjects that share common properties and relationships .In C++, a class isa
new datatype that contains member variables and member functions that operatesonthe variables. A
class is defined with the keyword class. It allows the datato be hidden, if necessary fromexternal use.
When we defining a class, we are creating a new abstract data type that can be treated like any other
built in data type.
Generallyaclassspecificationhastwo parts:-
a) Classdeclaration
b) Classfunctiondefinition
the class declaration describes the type and scope of its members. The class function
definition describes how the class functions are implemented.

Syntax:-
classclass-name
t
private:
variabledeclarations;
functiondeclaration;
public:
variabledeclarations;
function declaration;
h
Themembersthathavebeendeclaredasprivatecanbeaccessedonly
from with in the class. On the other hand , public members can be accessed from outside the class
also. The data hiding is the key feature of oops. The use of keywords private is optional by default,
the members of a class are private.

The variables declared inside the class are known as data members and the functions
are known as members mid the functions. Onlythe member functions can have access to the private
data members and private functions. However, the public members can be accessed fromthe outside
the class. The binding ofdata and functions together into a single class type variable is referred to as
encapsulation.

Syntax:-

classitem

{
intmember;
float cost;

public:
voidgetldata(inta,floatb);
void putdata (void);

The class item contains two data members and two function members, the data
members are private by default while both the functions are public by declaration. The function
getdata() can be used to assign values to the member variables member and cost, and putdata() for
displaying their values . These functions provide the only access to the data members from outside
the class.

33

P.T.C

CREATING OBJECTS:
Once a class has been declared we can create variables of that type
by using the class name.
Example:
item X;
creates avariables x oftype item. In C++, the class variables are knownas objects. Therefore x
is called an object of type item.

itemx,y,zalsopossible. class

>z
wouldcreatetheobjects x,y,zoftypeitem.

ACCESSINGCLASS MEMBER:

The private dataofa class can be accessed only throughthe member functions ofthat
class. The main() cannot contains statements that the access number and cost directly.

Syntax:

objectname.function-name(actualarguments);
Example:- X. getdata(100,75.5);
Itassignsvalue100tonumber,and75.5tocostoftheobjectxby implementing the
getdata() function .
similarlythe statement
X. putdata();//woulddisplaythevaluesofdatamembers.
x. number=100 is illegal. Althoughxisanobject ofthetype itemto whichnumberbelongs, the
number can be accessed onlythrough a member function and not bythe object directly.

Example:
class xyz
{
Intx;
Inty,
public:
intz;
I
Xyzp,
p.x=0; error.xis private
p,z=10; ok,z ispublic

34

P.T.C

DEFINING MEMBERFUNCTION:
Membercanbedefinedintwoplaces
« OQutsidetheclassdefinition
 Insidetheclassfunction

OUTSIDETHECLASS DEFINAT10N;

Member functionthat are declared inside a class have to be defined separately
outside the class.Their definition are very much like the normal functions.

Animportantdifferencebetweenamemberfunctionandanormal
functionisthatamemberfunctionincorporatesamembership.Identifylabelintheheader. The ‘label’ tells the
compiler which class the function belongs to.

Syntax:

returntypeclass-name::function-name(argumentdeclaration)

{

function-body

The member ship label class-name :: tells the compiler that the function function -
name belongs to the class class-name . That is the scope of the function is restricted to the class-
name specified in the header line. The :: symbol is called scope resolution operator.

Example:
voiditem::getdata(inta, floatb)
{
number=a;
cost=Db;
}

voiditem::putdata(void)

cout<<’number=:"<<number<<end]l;
cout<<’cost="<<cost<<endl;
}
Thememberfunctionhavesomespecial characteristicsthatare oftenusedintheprogram
development.

« Several different classes can use the same function name. The "membershiplabel”
willresolvetheirscope,memberfunctionscanaccesstheprivatedataoftheclass
.Anonmemberfunctioncan'tdoso.

« A member functioncancallanother member functiondirectly, without using the dot
operator.

55

P.T.C

INSIDETHECLASSDEFINATION:
Another method of defining a member function is to replace the function
actual function definition inside the class .
Example:
classitem

{

Intnumber;
float cost;
public:
voidgetdata(inta,floatb); void
putdata(void)

{

declarationbythe

cout<<number<<endl;cout<<cost<<endl;

}
}

AC++ PROGRAMWITHCLASS:
#include<iostream.h> class

item

{
intnumber;
float cost;

public:
voidgetdata(inta,floatb); void
putdala (void)

{

cout<<“number:”<<number<<end]l;
cout<<’’cost :’<<cost<<endl;

ky
}.

voiditem: :getdata(inta,’floatb)

number=a;
cost=Db;
¥

main()

{ -
item X;
cout<<"\nobjectx”’<<endl;
X.getdata(100,299.95);
X .putdata();
itemy;
cout<<’\nobjecty”<<endl;
y.getdata(200,175.5);
y.putdata();

}

Output: object x
number100

36

P.T.C

€0st=299.950012
object -4
cost=175.5

Q

WriteasimpleprogramusingclassinC++toinputsubject markandprintsit. ans:
classmarks
{ _
private:
intml,m2;
public:
void getdata();
voiddisplaydata();
b
voidmarks::getdata()
{
cout<<’enterlstsubjectmark:”;
cin>>ml;
cout<<’enter2ndsubjectmark:”;
cin>>m2;

}
voidmarks::displaydata()

{

cout<<"Istsubjectmark:”<<ml<<endl;
cout<<’2nd subject mark:”<<m2;

void main()
clrscr();
marks X;

x.getdata();
x.displaydata();

¥

37 P.T.C

NESTING OF MEMBER FUNCTION;

A memberfunction canbe calledby usingits nameinside anothermemberfunction of the same
class. This is known as nesting of member functions.

#include<iostream.h>

class set
t
intm,n;
public:
void input(void);
voiddisplay(void);
void largest(void);
b
intset::largest (void)
if(m>n)
returnm;
else
returnn;
}
voidset::input(void)
{

cout<<"inputvaluesofmandn:”;
cin>>m>>n;

voidset::display(void)
cout<<’largestvalue="<<largest()<<"\n";
void main()

{
set A;

A.input();
A.display();

output:
Inputvaluesofmandn:
3017

largestvalue=30

38

P.T.C

Private member functions:

Although it is a normalpractice to place all the data items ina private sectionand allthe functions in
public, some situations mayrequire contain functions to be hidden fromthe outside calls. Tasks such
as deleting an account in a customer file or providing increment to and employee are events of
serious consequences and therefore the functions handling such tasks should have restricted access.

We can place these functions in the private section.

Aprivate member functioncanonlybe called byanother functionthat is a member ofits class. Even an
object can not invoke a private function using the dot operator.

Classsample
{
intm;
void read (void);
voidwrite(void);
b
ifsiisanobjectofsample,then
s.read();
is illegal. However thefunctionread() canbecalled bythefunctionupdate()to update the
value of m.
voidsample:: update(void)
{
read();

¥

39

P.T.C

private:

public:

#include<iostream.h>

classpart

{

intmodelnum,partnum;
float cost;

voidsetpart(intmn,intpn,floatc)

{

modelmim=mn;
partnum=pn;
cost=e;

voidshowpart ()

{

Cout<<endl<<’model:’<<modelnum<<end1;
Cout<<’num:”<< partnum <<endl
Cout<<cost:’<<’$<cost;

}
%

void main()

{

partpl,p2;
pl.setpart(644,73,217.55);
p2.setpart(567,89,789.55);
pl.showpart();
pl.showpart();

}
output:-model:644
num:73
cost:$217550003
model: 567
num:89
cost:$759.549988

40

P.T.C

#indude<iostream.h>
classdistance

t
private:
int feet;
floatinches;
public:
voidsetdist (intft,floatin)
{
feet=ft;
inches=in;

}
void getdist()
{
cout<<’’enter feet:”;
cin>>feet;
cout<<”enterinches:”;
cin>>inches;
}

voidshowdist()

{

cout<<feet<<” inches«endl;

}
b
voidmain()

{
distance dl,d2;

dl.setdist(11,6.25);

d2.getdata();
cout<<endl<<”dist:’<<d1.showdist();
cout<<\n"<<dist2:”;

d2.showdist();

}

output:- enter feet: 12
enterinches:6.25
dist1:”11°-6.1.5”
dist2:12°-6.25”

41

P.T.C

ARRAY WITH CLASSES:

#include<iostream.h>
#include<conio.h>cla
ss employee
{
private:
charname[20];
int age,sal;
public:
voidgetdata();
voidputdata();

5
voidemployee::getdata()
{
cout<<’entername:”’;
cin>>name;
cout<<“enter age :”;
cin>>age;
cout<<’entersalary:”;
cin>>sal;
return(0);
}
void employee : : putdata()
{
cout<<name<<endl;
cout<<age<<endl,

cout<<sal<<endl;

return(0);
}

intmain()

{

42

P.T.C

employee emp[5]:
for(inti=0;i<5;i++)
{
empl[i].getdata();
}

cout<<endl,
for(i=0;i<5;i++)

{
emp([i].putdata();
}

getch();

return(0);

¥

ARRAYOFOBJECTS:-

#include<iostream.h>
#include<conio.h>
classemp
{
private:
charname[20];
int age,sal;
public:
void getdata();
void putdata();
b
void emp::getdata()
{
coul<<”enterempname”:.
cin>>name;
cout<<“enterage:’<<endl;
cin>>age;

cout<<’entersalun:”;

43

P.T.C

void

cin>>sal;
emp:: putdata()
cout<<"empname:”<<name<<endl;
cout<<’emp age:’<<age<<endl;

cout<<’emp salary:”<<sal;

by

void main()

{

emp foreman[5];
emp engineer[5];
for(inti=0;i<5;i++)
{
cout<<’forforeman:”;
foreman(i] . getdata();
}

cout<<endl;
for(i=0;i<5;i++)

{
Foreman[i].putdata();.
}
for(inti=0;i<5;i++)
{
cout<<’forengineer:”;

ingineer[i].getdata();

}

for(i=0;i<5;i++)

{
ingineer[i].putdata();
}

getch();

return(0);

}

44

P.T.C

REPLACEANDSORTUSINGCLASS:-
#include<iostream.h>

#include<constream.h>
classsort
{
private:
intnm[30];
public;
voidgetdata();
voidputdata();
¥
voidsort::getdata()
{
int i,j,k;
cout<<’enter10nos:”’;
for(i=0;i<10;i++)
{
cin>>nm[i];
}
for(i=0;i<9;i++)
{
for(j=i+l:j<10:j++)
{
if(nm[i]>nm[j])

{
k=nm([i];

nm[il=nm[j[;

nm[j]=k;

voidsort::putdata()

int k;
for(k=0;k<10;k++)
{

cout<<num[k]<<endl;
45

P.T.C

¥
¥

int main()

clrscr();
sorts;
s.getdata();
s.putdata();
return(0);

¥
ARRAY OFMEMBERS:

#include<iostream.h>

#include<constream.h>

constintm=50;

class items

{
int item_code[m];
floatitem_price[m];
int count;

public:
voidcnt(void){count=0;} void
get_item(void);
voiddisplay_sum(void);
void remove(void);

voiddisplay_item(void);

voiditems::get_item(void)

cout<<’enteritemcode:”;
cin>> item_code[code];
cout<<"enteritemcost:”’;
cin>>item_price[count];

count ++ ;
}
void items::display_sum(void)
{
floatsum=0;
for(inti=0;i<count;i++)
{

46 P.T.C

by

intmain()

{

}

sum=sum-+item_price[i];

}

cout<<“\ntotal value:”<<sum<<endl;

itemsorder;
order.cnt();

int X;

¥

do

{

cout<<"\nyou can do the following:”;
cout<<’enter appropriate no:”;
cout<<endl<<” 1 :add an item’’;
cout<<endl<<2: display total value :”;
cout<<endl<<”3 : display an item”;
cout<<endl<<4 :display all item:”;
cout<<endI<<”5 : quit:”;

cout<<endl<<endl<<’whatisyouroption:”;

cin>>Xx;

switch(x)

{

case 1: order.get_item(); break;
case2:order.display_sum();break;

cose 3: order.remove(); break;

cased: order.display_item();break;
caseb: break;

default:cout<<’error ininput;tryagain”;

Jwhile(x!=5);

47

P.T.C

LECTURE-17

STATICDATAMEMBER:

Adata memberofa classcanbe qualifiedasstatic . The
propertiesofastatic membervariablearesimilartothatofa staticvariable. Astatic membervariable has
contain special characteristics.
Variablehascontainspecialcharacteristics:-

1) It isinitialized to zero when the first object of its class iscreated.No other
initialization is permitted.

2) Onlyone copyofthat member iscreatedforthe entire classand isshared by all
the objects of that class, no matter how many objects are created.

3) It is visible only with in the class but its life time is the entire program. Static

variables are normally used to maintain values common to the entire class.
For example a static data member can be used as a counter that records the
occurrence of all the objects.

intitem:: count;// definitionofstaticdata member

Note that the type and scope of each static member variable must be defined outside
the class definition .This is necessary because the static data members are stored separately rather
than as a part of an object.

Example:-

#include<iostream.h>
classitem
{
staticintcount;//countisstatic
int number;
public:
voidgetdata(inta)
{
number=a;
count++;

}

voidgetcount(void)

{
cout<<’count:”’;
cout<<count<<endl;

}

b
intitem::count ;//count defined

int main()
{
item a,b,c;
a.get_count();
b.get_count();
c.get_count():
a.getdata():
b.getdata();

48

P.T.C

c.getdata();
cout«"afterreadingdata:"«endl;
a.get_count();
b.gel_count();
c.get count();
return(0);

¥

Theoutputwouldbe
count:0
count:0
count:0

Afterreadingdata
count:3
count:3
count:3

The static Variable count is initialized to Zero whenthe objects created . The count is
incremented whenever the data is read into an object. Since the data is read into objects three times
the variable count is incremented three times. Because there is only one copy of count shared by all
the three object, all the three output statements cause the value 3 to be displayed.

STATICMEMBERFUNCTIONS:-

Amemberfunctionthatisdeclaredstatichasfollowingproperties :-
1. A staticfunctioncanhaveaccesstoonlyotherstaticmembersdeclaredinthe
sameclass.
2. Astatic member functioncanbecalledusingtheclassnameasfollows:- class
- name :: function - name;
Example:-
#include<iostream.h>
classtest
{
intcode;
staticintcount;//staticmember variable
public:
voidset(void)
{

code=++count;

}

voidshowcode(void)

{

cout<<’objectmember: “<<code<<end;

}

staticvoidshowcount(void)
{cout<<count="<<count<<endl;}
_ b
inttest::count;
int main()

{
49

P.T.C

test t1,t2;

tl.setcode();
t2.setcode();
test :: showcount ();
test t3;
t3.setcode();
test::showcount();
t1.showcode();
t2.showcode();
t3.showcode();
return(0);
output:-count : 2
count: 3
objectnumberl
objectnumber2
objectnumber3

OBJECTSASEFUNCTION ARGUMENTS

Likeanyother datatype,anobjectmaybeused asAfunctionargument.Thiscanconeintwoways

1. Acopyoftheentire objectispassedtothe function.

2. Onlytheaddressoftheobjectistransferred tothefunction
The first method is called pass-by-value. Since a copy of the object is passed to the function, any
change made to the object inside the function do not effect the object used to callthe function.
The second method is called pass-by-reference . When an address of the object is passed, the called
functionworksdirectlyontheactualobject used inthecall. This meansthat anychanges madeto the object
inside the functions will reflect in the actual object .The pass by reference method is more efficient
since it requires to pass onlythe address ofthe object and not the entire object.

Example:-
#include<iostream.h>
classtime
{
int hours;
intminutes;
public:
voidgettime(inth,intm)
{
hours=h;
minutes=m;
}
voidputtime(void)

{

cout<<hours<<’hoursand:”;

cout<<minutes<<’minutes:”<<end;

50

P.T.C

o1

P.T.C

voidsum(time,time);

3

voidtime::sum(timet1,timet2)

{

minutes=t1.minutes+t2.minutes;
hours=minutes%60;
minutes=minutes%60;
hours=hours+t 1.hours+t2.hours;

¥

int main()

{

time T1,T2,T3;
T1.gettime(2,45);
T2.gettime(3,30);
T3.sum(T1,T2);
cout<<"T1=";
T1.puttime();
cout<<’T2=";
T2.puttime();
cout<<’T3=";
T3.puttime();
return(0);

¥

52

P.T.C

LECTURE-18

FRIENDLYFUNCTIONS:-

We know private members can not be accessed from outside the class. That is a non -member
function can't have an access to the private data of a class. However there could be a case where two
classes manager and scientist,have beendefined we should like to use afunction income- tax to
operate on the objects of both these classes.

In such situations, c++ allows the common function lo be made friendlywith boththe classes , there
by following the functionto haveaccessto theprivatedataoftheseclasses.Sucha function need not be a
member of any of these classes.

To make anoutside function"friendly" to a class, we have to simplydeclare this functionas a friend of
the classes as shown below :

class ABC

friendvoidxyz(void);

}

The function declaration should be preceded by the keyword friend , The function is defined else
where in the program like a normal C ++ function . The function definition does not use their the
keyword friend or the scopeoperator :: . The functions that are declared with the keyword friend are
known as friend functions. A function can be declared as a friend in any no of classes. A friend
function, asthoughnot amember function, has fullaccessrightstotheprivatemembersoftheclass.

Afriendfunctionprocessescertainspecialcharacteristics:
a. Itisnotinthescopeoftheclasstowhich ithasbeendeclared asfriend.
b. Sinceitisnotinthescopeoftheclass,itcannotbecalledusingtheobjectofthat class. It can be
invoked like a member function without the help of anyobject.
c. Unlikememberfunctions.

Example:

#include<iostream.h>

classsample

{ -
inta;
intb;

public:
voidsetvalue(){a=25;b=40;}
friend float mean(sample s);

¥
float mean(sample s)
{
return (float(s.a+s.b)/2.0);
}
intmain()

{
53

P.T.C

output:
meanvalue:32.5

Afunction friendlytotwoclasses

#include<iostream.h>
classabc;
class xyz

{
public:

intx;

sample x;

X. setvalue();
cout<<’meanvalue="<<mean(x)<<endl;
return(0);

}

voidsetvalue(intx){x-=I;} friend
void max (xyz,abc);

b
classabc
t
Inta;
public:
voidsetvalue(inti){a=i;} friend
void max(xyz,abc);
3
voidmax(xyz m,abcn)
{
if(m.x>=n.a)
cout<<m.x;
else
cout<<n.a;
}
int main()
{
abc j;

J.setvalue(10);

XyZS;

s.setvalue(20);
max(s, j);
return(0);

¥

SWAPPINGPRIVATEDATAOF CLASSES:

#include<iostream.h>

classclass-2;
class class-1

{

54

P.T.C

int value 1;
public:
voidindata(inta){value=a;}
void display(void) { cout<<value<<endl; }
friendvoidexchange(class-1&,class-2&);

)2
classclass-2

{
intvalue2;
public:
voidindata(inta){value2=a;}
voiddisplay(void){cout<<value2<<endl;} friend
void exchange(class-1&, class-2 &);
b
voidexchange(class-1&x, class-2&y)
{
inttemp=x.value 1;
x.valuel=y.valuo2;
y.value2=temp;

¥

intmain()

{

class-1 c1;

class-2 c2;

cl.indata(l100);

c2.indata(200);
cout<<valuesbeforeexchange:”’<<endl;
cl.display();

c2.display();

exchange(cl,c2);
cout<<valuesafterexchange:”’<<endl; c1.
display ();

c2.display();

return(0);

¥

output:
valuesbeforeexchange
100
200
valuesafterexchange
200
100

55

P.T.C

PROGRAMFORILLUSTRATINGTHEUSEOFFRIEND FUNCTION:

#include<iostream.h>

class accountl;

classaccount2

t

private:

intbalance;

public:

account2(){balance=567;}

void showacc2()

{

cout<<’balanceinaccount2is:”<<balance<<endl,;
friendinttransfer(account2&acc2, accountl&accl,intamount);

3
classacountl
L
private:
intbalance;
public:
accountl (){ balance=345;}
voidshowaccl()
{
cout<<’balanceinaccount] :’<<balance<<endl;
}
friendinttransfer(account2&acc2,account1&accl,intamount);
3
int transfer(account2&acc2,accountl&accl,intamount)
{
if(amount<=accl. bvalance)
{
acc2.balance+=amount;
accl.balance-=amount;
}
else
return(0);
)
intmain()
{

accountl aa;
account2 bb;

cout<<“balanceintheaccountsbeforetransfer:”;
aa.showaccl();

bb.showacc2();

cout <<“amt transferredfromaccountltoaccount2is:”;
cout<<transfer (bb,aa,100)<<endl;

56

P.T.C

cout<<‘balanceintheaccountsafterthe transfer:”;
aa.showacc 1 ();
bb.showacc2();return(0);

output:
balanceintheaccountsbeforetransfer
balance in account 1 is 345
balance in account2is 567
andtransferredfromaccount!toaccount2is100 balance
inaccount 1 is 245
balanceinaccount2is667

57 P.T.C

LECTURE-19

RETURNINGOBJECTS:
#include<iostream,h>
classcomplex

{
floatx;
floaty;
public:
voidinput(floatreal, floatimag)
{
x=real,
y=imag;
friendcomplexsum(complex,complex);
void show (complex);
3
complexsum(complexcl,complexc?)
{
complex c3;

€3.X=Cl.x+Cc2.x;
c3.y=cl.y+c2.y;
return c3;}

voidcomplex::show(complex c)

{

cout<<c.x<<” +j “<<c.y<<endl;

}

intmain()

{

complex a, b,c;
a.input(3.1,5.65);
b.input(2.75,1.2);
c=sum(a,b);

cout<<” a=";a.show(a);
cout<<"b=*;b.show(b);
cout<<’c=";c.show(c);
return(0);

}
output:
a=3.1+j5.65
b=2.75+j1.2
¢=5.55+)6.85

58

P.T.C

POINTERTOMEMBERS;
It is possible totakethe addressofa member ofaclass and assign it to apointer. The address ofa
member can be obtained by applying the operator &to a “fully qualified” class member name.

Aclass member pointer canbedeclaredusingtheoperator::*withtheclassname.
ForExample:
classA
L
private:
intm;
public:
voidshow();
3

Wecandefineapointertothe member masfollows: int
A*ip=&A:m
The ip pointer createdthus acts like a class member inthat it must be invoked witha class object. In
the above statement. The phrase A :: * means “pointer - t0 - member ofa class” . The phrase & A ::
m means the “ Address of the m member of a class”

Thefollowingstatementisnotvalid:
int*ip=&m ; // invalid
This is because m is not simply an int type data. It has meaning only when it is associated
with the class to which it belongs. The scope operator must be applied to both the pointer and the
member.

The pointer ip can now be used to access the m inside the memberfunction (or
friend function).

Let usassumethat‘‘a”isanobjectof*A”declared ina member function. Wecan access "m"
using the pointer ip as follows.

cout<<a.*ip;
cout<< a.m;
ap=&a,
cout<<ap->*ip;
cout<<ap->ga;

The deferencing operator ->* is used as to accept a member when we use pointers to
boththeobject andthe member. The dereferencingoperator..*is used whenthe object itself is used with
the member pointer. Note that * ip is used like a member name.

We can also design pointers to member functions which ,then can be invoked using
the deferencing operator in the main as shown below.

(object-name.* pointer-to-member function)

(pointer-to-object->*pointer-to-memberfunction)

Theprecedenceof() is higher than that of.*and->* , so the parenthesis are necessary.

59

P.T.C

DEREFERENCINGOPERATOR:
#include<iostream.h>clas
sM
t
intx;
inty;
public:
voidset_xy(inta,int b)
{
X=3;
y=b;
}
friendintsum(M);
b
intsum(Mm)
{
iNtM::*px=&M::x;//pointertomemberx
int M::*py-&m::y;//pointertoy M *
pm=&m;
ints=m.*px+pm->py; return(s);
}
intmain()
{
Mm;
void(M::*pf)(int,int)=&M::set-xy;//pointertofunctionset-xy(n*pf)(10,20);
/linvokes set-xy
cout<<’sum=:"<<sum(n)<<cncil;
n *op=&n; //point to object n
(op->*pf)(30,40);//invokesset-xy
cout<<’sum="<<sum(n)<<end 1 ;
return(0);
}
output:
sum=30
sum=70
60 P.T.C

LECTURE-20

CONSTRUCTOR:

A constructor is a special member function whose task is to initialize the objects of its class .
It is specialbecause its name is the same as the class name. The constructor is invoked whenever an
object ofits associated class is created. It is called constructor because it constructthe values ofdata
members of the class.

Aconstructorisdeclaredanddefinedasfollows:
[/I'classwithaconstructor
class integer

{
int m,n:
public:
integer!void);//constructor declared

Whena classcontainsa constructor like theone defined above it isguaranteed that an
object created by the class will be initialized automatically.

Forexample:-
Integerintl;//objectint1created
This declaration not only creates the object intl of type integer but also initializesits
data members m and n to zero.

Aconstructorthatacceptnoparameter iscalledthe default
constructor. ThedefaultconstructorforclassAisA:: A().Ifnosuchconstructoris defined, then the compiler
supplies a default constructor .
Thereforeastatementsuchas:-
Aa;/linvokes the default constructor of the compiler of the
compiler to create the object"a" ;

Invokesthedefault constructorofthecompilertocreatetheobject a. The
constructor functionshave some characteristics:-

Theyshouldbedeclaredinthepublicsection.

Theyareinvoked automaticallywhenthe objectsare created.

Theydon't havereturntypes,notevenvoidandtherefore they

cannot return values.

Theycannotbeinherited ,thoughaderivedclasscancall
61

P.T.C

thebaseclassconstructor.
e Likeother C++function,theycanhavedefaultarguments,
e Constructorcan't bevirtual.
e Anobject withaconstructorcan't beusedasa memberof
union.
Exampleofdefaultconstructor:

#include<iostream.h>
#include<conio.h>

classabc

{

private:
charnm[];
public:
abc()
{

cout<<’enteryourname:”;
cin>>nm;

}
voiddisplay()

{
}
}

int main()

cout<<nm;

clrscr();

abc d;

d.display();

getch();

return(0);

}

PARAMETERIZEDCONSTRUCTOR:-
the constructorsthat cantake argumentsare called parameterized constructors.
Using parameterized constructor we can initialize the various data elements ofdifferent objects with
different values when they are created.
Example:-
classinteger

{ .
int m,n;
public:
integer(intx,int y);

62 P.T.C

implicitly.

integer::integer(int x,inty)

{
¥

m=x;n=y;

theargumentcanbepassedtotheconstructorbycallingtheconstructor

integerintl=integer(0,100);//explicitcall
integer int 1(0,100); //implicite call

CLASSWITHCONSTRUCTOR:-

output:

#include<iostream.h>cl
ass integer

{
public:

objectl
m=0
n=100
object2
m=25
n=25

int m,n;

integer(int,int);
voiddisplay(void)

cout<<"m=:"<<m;
cout<<’n="<<n;

}
integer::integer(intx,inty)//constructordefined
{
m=x;
n=y;
}
int main()
{
integer int 1(0, 100); //implicitcall
integer int2=integer(25,75);
cout<<’\nobjectl“<<end],
intl.display();
cout<<’\nobject2“<<endl,
int2.display();
}

63

P.T.C

Example:-
#include<iostream.h>
#include<conio.h>clas

s abc
L
private:
charnm[30]; int
age;
public:
abc (){ }/ default
abc(charx[],inty);
void get()
{
cout<<’enteryourname:”;
cin>>nm;
cout<<’enteryourage:”;
cin>>age;
}
voiddisplay()
{
cout<<nm«end]l;
cout«age;
}
3
abc::abc(charx[], inty)
strcpy(nm,X);
age=y;
}
voidmain()
{
abc 1;
abcm=abc(**computer”,20000);
l.get();
ldispalay();
m.display();
getch();
}

OVERLOADEDCONSTRUCTOR:-
#include<iostream.h>
#include<conio.h>
classsum
{ -
private;
int a;
int b;
int c;
floatd;
double €;
public:
sum()

{

cout<<’entera;”;

cin>>a;

cout<<’enterb;”;

cin>>b;

cout<<’sum= “<<at+b<<endl;
}

sum(inta, intb);
sum(inta,floatd,doublec);
j

sum::sum(intx,inty)

a=x;

b=y;
¥
sum::sum(intp, floatq,doubler)

a=p;
d=q;
e=r;

voidmain()

{

clrscr();

sum 1;

sum m=sum(20,50);
sumn=sum(3,3.2,4.55);
getch();

}

output:
entera: 3
enterb: 8
sum=11
sum=70
sum=10.75

COPY CONSTRUCTOR:
Acopyconstructorisusedto declareandinitializeanobjectfromanotherobject.
Example:-
thestatement
integer12(11);
woulddefinetheobject12andatthesametimeinitializeittothevaluesofl1.
Another formofthisstatementis:integer12=11,;
Theprocess ofinitializationthrougha copyconstructorisknownas copyinitialization.
Example:-
#incliide<iostream.h>
classcode

{

intid;

public
code(){} //constructor
code(inta){id=a;}//constructor

code(code &x)
{
Id=x.id;
}
voiddisplay()
{
cout<<id;
}
%
int main()
{
codeA(100);
code B(A);
code C=A;
code D;
D=A;

cout<<"\nidofA:”;A.display();

cout<<” \nid of B :”’; B.display();
cout<<”\n id of C:”; C.display();
cout<<”\n id ofD:”; D.display();

¥

output:-
idofA:100
idofB:100
idofC:100
idofD:100

DYNAMICCONSTRUCTOR:-
The constructors can also be used to allocate memory while creating objects .

This will enable the systemto allocate the right amount of memory for each object when the objects
are not of the same size, thus resulting in the saving of memory.

Allocate of memory to objects at the time of their construction is known as dynamic
constructors of objects. The memory is allocated with the help of new operator.

Example:-

#include<iostream.h>

#include<string.h>clas

s string

{

char*name;

int length;
public:
string ()

{
length=0;
name=newchar[length+1];/* oneextrafor\Q */

string(char*s)//constructor2
length=strlen(s);name=new

char[length+1];
strcpy(name,s);

voiddisglay(void)

¢ cout<<name<<end|;

30idjoin(string&a.string&b)
][ength:a.length+b. length;
delete name;

name=newchar[length+I];/*dynamicallocation*/
strcpy(name,a.name);
strcat(name,b.name);

}

b
int main(
{
char* first ="Joseph” ;
stringnamel (first),name2(“louis”),naine3(“LaGrange”),sl,s2;
sl.join(namel,name2);
s2.join(s1,name3);
namel.display();
name2.display();
name3.display();
sl.display();
s2.display();
}

output:-
JosephLouis
language
JosephLouis
JosephLouisLanguage

DESTRUCTOR:-

A destructor, us the name implies is used to destroy the objects that have been created by a
constructor. Like a constructor, the destructor is a member function whose name is the same as the
class name but is preceded by a tilde.

ForExample:-
~integer(){}

A destructor never takes any argument nor does it return any value. It will be invoked
implicitly by the compiler upon exit from the program to clean up storage that is no longeraccessible.
It is a good practice to declare destructor ina programsince it releases memoryspace for future use.

Deleteisused to freememorywhich iscreated bynew.

Example:-
matrix::~matrix()
{
for(inti=0;i<11;i++)
deletep[i];
delete p;
}

IMPLEMENTEDOFDESTRUCTORS:-
#include<iostream.h>

intcount=0;
class alpha
{

public:

alpha()

{

count++;

cout<<”\nnoofobjectcreated :”<<end];

¥

~alpha()

{
cout<<"\nnoofobjectdestroyed:”<<endl;
coutnt--;

}

I3
int main()
{
cout<<’\n\nentermain\n:”;
alpha A1,A2,A3,A4;
{

cout<<” \nenterblock 1:\n”;

alphaAb5;

¥
{

cout<<"\n\nenterblock2\n”; alpha
Ab;
}

cout<<\nre-entermain\n:”; return(0);

by

output:-
enter main
noofobjectcreatedl
noofobjectcreated2
noofobjectcreated3
noofobjectcreated4
enter block 1
no of object created 5
noofobjectdestroyed5
enter block 2
no of object created 5
noofobjectdestroyed5
re-entermain
noofobjectdestroyed4
no of object created 3
no of object created 2
no of object created 1

Example:-
#include<iostream.h>
int x=I,
classabc
{
public:
abc()
{
X-<;
cout<<’constructtheno”<<x<<endl;
}
~abc()
{
cout<<’destructtheno:”’<<x<<endl;
X==3
}
Y
int main()
{
abcl1,12,13,14;
cout«ll«12«13«l4«endl;
return(0);

¥

OPERATOROVERLOADING:-
Operator overloading provides a flexible option for the creation of new definations for most
of the C++ operators. We can overload all the C++ operators except the following:

e Classmembersaccessoperator(.,.*)
e Scoperesolutionoperator(::)
e Sizeoperator(sizeof)
e Conditionoperator(?:)

Although the semantics of an operator can be extended, we can't change its syntax, the
grammatical rules that govern its use such as the no of operands precedence and associativety. For
example the multiplication operator will enjoy higher precedence than the addition operator.

Whenanoperator isoverloaded, itsoriginalmeaning isnot lost. For example, the
operator +, which has been overloaded to add two vectors, can still be used to addtwo integers.

DEFININGOPERATOROVERLOADING:

To define an additional task to an operator, we must specify what it means in
relationtothe class to whichthe operator is applied . This is done withthe help ofa specialfunction
called operator function, which describes the task.

Syntax:-
return-type class-name ::operatorop(arg-list)
{
functionbody
b

Where returntype is the type ofvalue returned bythe specified operation and
op is the operator being overloaded. The op is preceded by the keyword operator, operator op is the
function name.

operatorfunctionsmustbeeithermemberfunction,orfriend
function. A basic defference between them is that a friend function will have onlyone argument for
unaryoperators and two for binaryoperators, This is because the object used to invoke the member
function ispassed implicitlyand therefore isavailable for the member functions. Argumentsmaybe
either by value or by reference.

operatorfunctionsaredeclared in.theclassusing prototypesasfollows:- vector
operator + (vector); /./ vector addition
vectoroperator-();//unary minus
friend vectoroperator+(vuelor,vector);// vectoradd
friend vector operator -(vector); // unary minus
vector operator - (vector &a); /I substraction
intoperator==(vector); //comparision
friendintoperator==(vector,vrctor);//comparision

vectorisadatatypeofclassand mayrepresent bothmagnitudeanddirectionor aseries ofpoints

called elements.

Theprocessofoverloadinginvolvesthefollowing steps:-

1. Createaclassthatdefinesthedatatypethatisusedintheoverloadingoperation.

2. Declaretheoperatorfunctionoperatorop()inthe public partoftheclass
3. Itmaybeeitheramemberfunctionorfriendfunction.

4. Definetheoperatorfunctiontoimplementtherequiredoperations.

Overloadedoperatorfunctionscanbeinvokedbyexpressionssuchas op x
orx op;

forunaryoperatorsand x

opy

forbinaryopearators.

operator op(X);

forunaryoperatorusingfriendfunction

operator op(X,y);

for binaryoperatorusinf friendfunction.

Unary—operatoroverloading(usingmemberfunction):

classabc
{
intm,n;
public:
abc()

{

m=8;
n=9;

}

voidshow()

{

cout<<ms<<n;

¥

operator--()

void main()
{

abc X;
x.show();

__X;

x.show();

Unary—operatoroverloading(usingfriendfunction):

classabc
{
intm,n;
public:
abc()

{

m=8;
n=9;

}

voidshow()

{

cout<<me<<n;

}
friendoperator--(abc&p);
b

operator--(abc&p)

void main()
{

abc x;
x.show();
operator--(x);
x.show();

}

Unaryoperator+foraddingtwocomplexnumbers(usingmemberfunction)

classcomplex

{
floatreal,img;
public:
complex()
{
real=0;
img=0;
}
complex(floatr,floati)
{
real=r;
img=i;
voidshow()
{
cout<<real<<’+i’<<img;
}

complexoperator+(complex&p)

complex w;
w.real=real+q.real;
w.img=img+q.img;

return w;
}
b
void main()
{

complexs(3,4);
complext(4,5);
complex m;
M=S+t;
s.show();
t.show();
m.show();

}
Unaryoperator+foraddingtwocomplexnumbers(usingfriendfunction)

classcomplex

{
floatreal,img;
public:
complex()
real=0;
img=0;
complex(floatr,floati)
{
real=r;

img=i;

¥

voidshow()
{
cout<<real<<’+i’<<img;
}
friendcomplexoperator+(complex&p,complex&q);
b
complexoperator+(complex&p,complex&aq)
{
complex w;
w.real=p.real+q.real;
w.img=p.img+q.img;

return wi,
}
¥
void main()

complexs(3,4);complext(4,5);
complex m;
m=operator+(s,t);
s.show();t.show();

m.show();

by

Overloadinganoperatordoesnotchangeitsbasicmeaning.Forexampleassumethe+ operator can be
overloaded to subtract two objects. But the code becomes unreachable.
classinteger

{
intx,y;
public:
intoperator+();
}
intinteger::operator+()
{
return(x-y);
}

Unary operators, overloaded by means of a member function, take no explicit argument and
return no explicit values. But, those overloaded by means of a friend function take one
reference argument (the object of the relevant class).
Binaryoperatorsoverloadedthroughamember functiontakeone explicit argument andthose
which are overloaded through a friend function take two explicit arguments.

Table7.2
Operatorto Argumentspassedtothe ArgumentspassedtotheFriend
Overload MemberFunction Function
UnaryOperator No 1
BinaryOperator 1 2

TypeConversions

In a mixed expression constants and variables are of different datatypes. The assignment operations
causes automatic type conversion between the operand as per certain rules.

The type of datato the right of an assignment operator is automaticallyconverted to the data type of
variable on the left.

Considerthefollowingexample: int
X,
floaty=20.123;

X=Y

This converts float variable y to an integer before its value assigned to x. The type conversion is
automatic as far as datatypes involved are built intypes. We canalso use the assignment operatorin
caseofobjectsto copyvaluesofalldata members ofright handobject totheobject onleft hand. The objects
in this case are of same data type. But of objects are of different data types we must apply conversion
rules for assignment.

Therearethreetypesofsituationsthatarisewheredataconversionarebetweenincompatible types.

1. Conversionfrombuiltintypetoclass type.
2. Conversionfromclasstypetobuiltintype.
3. Conversionfromoneclasstypetoanother.

BasictoClassType

A constructor was used to build a matrix object from an int type array. Similarly, we used another
constructor to build a string type object from a char* type variable. In these examples constructors
performed a defacto type conversion from the argument'’s type to the constructor's class type

Considerthefollowingconstructor: string
. string (char*a)

length = strlen (a);
name=newchar[len+1];
strcpy (name,a);

¥

Thisconstructorbuildsastringtypeobjectfrom achar*typevariablea. Thevariableslength and name are data
members of the class string. Once you define the
constructorintheclassstring,itcanbeusedforconversionfromchar*typetostringtype.

Example
string si,s2;
char*namel=“GoodMorning”;
char* name2 =“STUDENTS”; sl
= string(namel);
S2= name2z;

Theprogramstatement
si=string(namel);

firstconvertsnamelfrom char*typetostringtypeandthenassignsthestringtypevaluestothe object s1. The
statement

s2=namez2;

performsthesamejobbyinvokingtheconstructorimplicitly.
Considerthefollowingexample
classtime
{
int hours;
intminutes;
public:
time (intt)//constructor
{
hours = t/60; /ltisinputtedinminutes
minutes=t%60;
}
b

Inthefollowing conversionstatements:

time TI; /lobject TI created
int period =160;
Tl=period; /linttoclasstype

The object Tlis created. The variable period ofdatatype integer is converted into class type time by
invoking the constructor. After this conversion, the data member hours of Tl will have value 2 arid
minutes will have a value of 40 denoting 2 hours and 40 minutes.

Note that the constructors used for the type conversion take a single argument whose type is to be
converted.

In both the examples, the left-hand operand of = operator is always a class object. Hence, we canalso
accomplish this conversion using an overloaded = operator.

ClasstoBasicType

The constructor functions do not support conversion from a class to basic type. C++ allows us to

define a overloaded casting operator that convert aclass type data to basic type. The general formof

an overloaded casting operator function, also referred to as a conversion function, is:
operatortypename()

{
¥

This function converts a class type data to typename. For example, the operator double() converts a
class object to type double, in the following conversion function:
vector::operatordouble ()

/[Programstatmerit.

{
doublesum =0 ;
for(intl=0;ioize;
sum =sum + V[i]* v[i] ; //scalarmagnitude
returnsqrt(sum);
}

Thecastingoperatorshouldsatisfythefollowing conditions.

e Itmustbeaclass member.

e Itmustnot specifyareturntype.

e Itmustnothaveanyarguments.Sinceitisamemberfunction,itisinvoked
bytheobjectandtherefore,thevaluesusedfor,Conversioninsidethe
functionbelongstotheobjectthatinvokedthefunction.Asaresultfunction does not need an
argument.

Inthestringexamplediscussedearlier,wecanconverttheobject stringtochar*asfollows:
string::operator char*()

{
k

return(str);

OneClassto AnotherClassType

We have just seendataconversiontechniques fromabasictoclasstypeandaclassto basictype. But
sometimes we would like to convert one class datatype to another class type.

Example
Obj1=0bj2;//ObjlandObj2 areobjectsofdifferentclasses.
Obijlis anobject ofclass one and Obj2 is anobjectofclass two. The class two type datais converted to
class one type data and the converted value is assigned to the Objl. Since the conversion takes place
from class two to class one, two is known as the source and one is known as the destination class.
Such conversion between objects of different classes can be carried out by either aconstructor
or a conversion function. Which form to use, depends upon where we want the type- conversion
function to be located, whether in the source class or in the destination class.
Westudiedthatthecastingoperatorfunction

Operator typename()

Convertsthe classobject ofwhich it isa member totypename. Thetype name may be a built-intype or a
user defined one(another class type) . Inthe case of conversions between objects,

typename refers to the destination class. Therefore, when a class needs to be converted, a
casting operator functioncanbe used. The conversiontakesplace inthe source classand the result is
given to the destination class object.

Let us consider a single-argument constructor function which serves as an instruction for
converting the argument'’s type to the class type of which itis a member. The argument belongs tothe
source class and is passed to the destination class for conversion. Therefore the conversion
constructor must be placed in the destination class.

Table7.3
Conversion Conversiontakesplacein
Sourceclass Destinationclass
Basictoclass Notapplicable Constructor
ClasstoBasic Castingoperator Notapplicable
Classtoclass Castingoperator Constructor

When a conversion using a constructor is performed in the destination class, we must be able to
access the data members ofthe object sent (bythe source class) as anargument. Since data members of
the source class are private, we mustuse special access functions in the source class tofacilitateits
data flow to the destination class.

Consider the following example ofan inventoryof products ina store. One wayofkeeping recordof the
details ofthe productsis torecordtheir codenumber, totalitems inthe stock andthe costofeach item.
Alternatively we could just specify the item code and the value of the item in the stock. The
following program uses classes and shows how to convert data of one type to another.

#include<iostream.h>
#include<conio.h>clas
s stock?2;

classstockl

{

intcode, item;

float price;

public:
stockl(inta,intb,floatc)
{

code=a;

item=b;

price=c;

}
voiddisp()
{

cout<<’code”<<code <<’\n”;

cout<<’Items”<<item<<"\n";

cout<<’PriceperitemRs. “<<price<<’\n”;
b

intgetcode()
{returncode;}
int getitem()
{returnitem;}
int getprice()
{return price;}

operatorfloat()

{
return(item*price);
}

b

classstock2

{

intcode;
floatval;
public:
stock2()

{

code=0; val=0;
}
stock2(intx,floaty)
{

code=x; val=y;

}
voiddisp()

cout<< “code’<<code<<“\n”;
cout<< “TotalValue Rs.“<<val<<’\n”

}
stock2(stocklp)

code=p . getcode () ;
val=p.getitem()*p.getprice();

I3
voidmain()

{

Stocklil(101,10,125.0);

Stock212;

floattot_val;

tot_val=il;

i2=il;
cout<<’StockDetails-stockl-type”’<<\n”; i
1.disp();

cout<<’Stockvalue”’<<”\n”;

cout<< tot_val<<’\n”;
cout<<”StockDetails-stock2-type”<<“\n”; i2
disp() ;

getch() ;

}

Y oushouldgetthefollowing output.
StockDetails-stock1-type

code 101

Items 10

PriceperitemRs.125
Stock value
1250

StockDetails-stock2-type
codel0 1
TotalValueRs.1250

Inheritance:

Reaccessability is yet another feature of OOP's. C++ strongly supports the concept of reusability.
TheC++classescan beused again in severalways. Onceaclasshasbeenwrittenand tested, it can be
adopted byanother programmers. This is basicallycreated by defining the new classes, reusing the
properties ofexisting ones. The mechanism ofderiving a new class froman old one is called
INHERTTENCE'. This is often referred to as IS-A' relationship because veryobject of the class
beingdefined"is"also anobjectofinheritedclass. Theoldclassiscalled'BASE classandthenew one is
called'DERIEVED'class.

DefiningDerivedClasses

Aderivedclassisspecifiedbydefiningitsrelationshipwiththebaseclassinadditiontoitsown details. The
general syntax of defining a derived class is as follows:

classd_classname:Accessspecifierbaseclassname

{

—_ //membersofderivedclass
h
Thecolonindicatesthatthea-class name isderivedfromthebaseclass name. Theaccess specifieror the

visibility mode is optional and, if present, may be public, private or protected. By default it is
private. Visibility mode describes the status of derived features e.g.

class xyz /Ibaseclass

¢ membersofxyz

iiassABC:publicxyz //publicderivation

¢ membersofABC

iiassABC:XYZ /Iprivatederivation(bydefault)
i membersofABC

In the inheritance, some of the base class data elements and member functions are inherited into the
derived class. We can add our own data and member functions and thus extend the functionality of
the base class. Inheritance, when used to modify and extend the capabilities of the existing classes,
becomes a very powerful tool for incremental program development.

Singlelnheritance

When a class inherits froma single base class, it is known as single inheritance. Following program
shows the single inheritance using public derivation.

#include<iostream.h>
#include<conio.h>clas
s worker

{

intage;
charname[10];
public:
voidget();

b

void worker: :get()

cout<<’youtnameplease” cin

>> name;
cout<<’yourageplease”; cin
>> age;
}
voidworker::show()
{
cout<<’InMynameis:”’<<name<<’InMyageis:”<<age;
}
classmanager::publicworker //derivedclass(publicly)
t
intnow;
public:
void get () ;
voidshow();
b

voidmanager::get()

worker : : get (); //thecallingofbaseclassinputfn.
cout << “number of workers under you”;

cin >> now;
cin>>name>>age;
} (iftheywerepublic)
void manager :: show ()
{
worker::show(); //callingofbaseclasso/p fn.
cout<<“inNo.ofworkersundermeare: “<<now;
}
main()
{
clrser () ;
worker W1,
managerM1;
M1 .get ();
M1.show();

Ifyouinputthefollowingtothisprogram:
Yournameplease
Ravinder
Yourageplease
27

numberofworkersunderyou 30

Thenthe outputwillbe asfollows:
Mynameis:Ravinder
My age is : 27
No.ofworkersunderme are:30
Thefollowingprogramshowsthesingleinheritancebyprivatederivation.
#include<iostream.h>
#include<conio.h>

classworker //Baseclassdeclaration

{ -
intage;
charname[10];
public:
void get () ;
voidshow();

b

void worker: :get()

cout<<“yournameplease”;
cin >> name;
cout<<“yourageplease”; cin
>>age;

voidworker:show ()

{
cout<<“inmynameis: ‘“<<name<<“in”<<“my ageis: “<<age;
}
classmanager:worker//Derivedclass(privatelybydefault)
{ -
intnow;
public:
void get () ;
voidshow();
3

voidmanager::get()
worker::get ();//calling thegetfunctionofbase
cout <<*numberofworkerunderyou”;classwhich is cin

>> NOW,

voidmanager ::show()

{
worker::show();
cout<<“inno.ofworkerunderme are :“<<now;
} -
main()

{

clrscr () ;
worker wl ;
managerml;
ml.get () ;
ml.show();

The followingprogramshowsthesingleinheritanceusingprotectedderivation

#include<conio.h>
#include<iostream.h>

classworker //Baseclassdeclaration

{protected:
intage;charname[20]; public:
void get ();
voidshow();

I

void worker::get ()

{
cout>>“yournameplease”;
cin >> name;
cout<<“yourageplease”; cin
>> age;

void worker::show()

{
cout<<“in mynameis: “<<name<<“inmyageis‘‘<<age,;
}
classmanager:: protected worker//protectedinheritance
t
int now;
public:void
get();
void show ();
I
voidmanager::get()
{
cout<<“pleaseenterthenameln’; cin
>> name;
cout<<“pleaseentertheageln”;//Directlyinputtingthedata cin
>> age; members of base class
cout <<*“pleaseentertheno.ofworkersunder you:”; cin
>> now;
¥
voidmanager ::show()
{ - -
cout «"yournameis:"«name«"andageis:"«age; cout
«"In no. of workers under your are : "«now;
main()
clrscr () ;
managerml;

ml.get () ;

cout«"\n\n";
ml.show();

¥

MakingaPrivateMemberInheritable

Basically we have visibility modes to specify that in which mode you are deriving the another class
from the already existing base class. They are:

a.

Private:whenabaseclassisprivatelyinheritedbyaderivedclass,'public
members'ofthebaseclassbecomeprivatemembersofthederivedclassand
thereforethepublicmembersofthebaseclasscanbeaccessedbyitsown
objectsusingthedotoperator.Theresultisthatwehavenomemberofbase class that is accessible to
the objects of the derived class.
Public:Ontheotherhand,whenthebaseclassispubliclyinherited,'public
members'ofthebaseclassbecome’publicmembers'ofderivedclassand therefore they are
accessible to the objects of the derived class.
Protected:C++providesathirdvisibilitymodifier,protected,whichservea
littlepurposeintheinheritance. Amemberdeclaredasprotectedisaccessiblebythememberfunctions
withinitsclassandanyclassimmediatelyderivedfrom it. It cannot be accessed by functions
outside these two classes.

Thebelow mentionedtablesummarizeshowthevisibilityofmembersundergo modificationswhen they
are inherited

BaseClassVisibility | DerivedClassVisibility

Public Private Protected
Private X X X
Public Public Private Protected
Protected Protected | Private Protected

Theprivateandprotected membersofaclasscanbeaccessed by:

Afunctioni.e.friendofa class.
Amemberfunctionofaclassthatisthefriendoftheclass.

Amemberfunctionofaderivedclass.

1. Definelnheritance.Whatisthe inheritance mechanisminC++?
2. Whataretheadvantageoflnheritance?

3. Whatshouldbethestructureofaclasswhenithastobeabaseforotherclasses?

StudentActivity

Multilevellnheritance

When the inheritance is such that, the class A serves as a base class for a derived class B which in
turn serves as a base class for the derived class C. This type of inheritance is called ‘“MULTILEVEL
INHERITENCE’. TheclassB isknownasthe INTERMEDIATE BASE CLASS’since it providesa link
for the inheritance between A and C. The chain ABC is called ‘ITNHERITENCE*PATH’ for e.g.

A

v

Inheritancepath B

L
v

Thedeclarationforthesamewouldbe:
Class A

{
//body

}
ClassB:publicA

{
//body

}
ClassC:publicB

{
//body

¥

Thisdeclarationwillformthedifferent levelsofinheritance.

Following program exhibits the multilevel inheritance.

#include<iostream.h>
#include<conio.h>
classworker /IBaseclassdeclaration
{ -

intage;

charname[20];

public;

voidget();

Baseclass

Intermediatebase
class

Derivedclass

void show();

voidworker:get()

cout<<“yournameplease”’;
cin >> name;
cout<<“your ageplease”;

}
voidworker::show()
{
cout<<“In mynameis: “<<name<<“In myageis: “<<age;
}
classmanager:publicworker//Intermediatebaseclassderived
{ /Ipubliclyfromthebaseclass
int now;
public:
void get () ;
voidshow();
b
voidmanager::get()
worker : :get () ; /lcallingget()fn.ofbaseclass
cout << “no. of workers under you:”;
cin>>now;
}
voidmanager ::show()
{
worker : : show () ; //callingshow()fn.ofbaseclass
cout << “In no. of workers under me are: “<< now;
}
classceo:publicmanager //declarationofderived class
{ /Ipubliclyinheritedfromthe
int nom; /lintermediatebaseclass
public:
void get () ;
voidshow();
3

voidceo: :get ()

manager :: get();
cout<<*“no.ofmanagersunderyouare:”;cin>>nom,;

}

voidmanager ::show()

{

cout <<*“Intheno.ofmanagersunder meare:In”; cout
<< “nom;

main()

clrscr();
ceocl;

cl.get();cout<<“\n\n”;

cl.show() ;

Worker

Private:
intage;
charname[20];

Protected:

Private:
intage;
charname[20];

Manager:Worker

Private:
intnow;

Protected:

Public:
void get()
void show()
worker::get()
worker::get()

Ceo:Manager

Public:

Protected:

Public:

Alltheinherited
members

Multiplelnheritances

A class can inherit the attributes of two or more classes. This mechanism is known as ‘MULTIPLE
INHERITENCE’. Multiple inheritance allows us to combine the features

of several existing classes as a starring point for defining new classes. It is like the child inheriting
the physical feature of one parentand the intelligence of another. The syntax of the derived class isas
follows:

Classbhasel Classbase2
{ {
//bodyl //body?2
} }
v
Classderived:visibilitybasel, visibilitybase2
{
//body3
}

Where the visibility refers to the access specifiers i.e. public, private or protected. Followingprogram
shows the multiple inheritance.

#include<iostream.h>#i
nclude<conio . h>

classfather //Declarationofbaseclassl
{
intage;
charflame[20];
public:
void get () ;
voidshow();
}
void father::get()
{
cout<<“yourfathernameplease”; cin
>> name;
cout<<“Entertheage”; cin
>> age;
}
void father ::show()
{
cout<<“Inmyfather’snameis: ‘<<name<<“Inmyfather’sageis:<<age;
}
classmother //Declarationofbaseclass2
{
charname[20];

int age ;

public:

voidget()
cout<<“mother’snameplease”’<<“In”; cin
>> name;
cout<<“mother’sageplease”<<“in”; cin
>> age;
voidshow()

cout<<“Inmymother’snameis:““<<name; cout
<< “In my mother’s age is: “ <<age;

classdaughter:publicfather,publicmother//derivedclassinheriting

/Ipublicly
char name [20] ; //thefeaturesofboththebaseclass int
std;
public:
void get () ;
voidshow();
3

voiddaughter::get ()
{

father :: get();

mother ::get();
cout<<‘“child'sname:*; cin
>> name;
cout<<‘“child'sstandard’’;
cin >> std;

void daughter::show()

{
father ::show();
nfather :: show();
cout <<“Inchild’snameis: “<<name; cout
<< “In child's standard: ““ << std;
}
main()
clrser() ;
daughterdl;
dl.get ();
dl.show ();

DiagrammaticRepresentationofMultipleInheritanceisas follows:

Father Mother
Private: Private:
intage; intage;
charname[20]; charname[20];
Protected: Protected:
Public: Public:
void get() void get()
voidshow() voidshow()

v

Classdaughter:publicFather,publicMother

Private:charname[20];intage;

Protected:

Public:
IIself
voidget();voidshowQ;
/[fromFather
voidget();voidshow();
/[fromMother
voidget();voidshow();

Hierarchicallnheritance

Another interesting application of inheritance is to use is as a support to a hierarchical design of a
class program. Many programming problems can be cast into a hierarchy where certain features of
one level are shared by many others below that level for e.g.

Accounts
JV A\ 4
SavingAccounts CurrentAccounts
v
Fixeddeposit
47 v
Shortterm Longterm
A\ 4
Midterm
Ingeneralthe syntaxisgivenas
ClassA
BN |
! //bodyA |
| ¥ i
v v
ClassB:publicA ClassC:publicA
{ {
//bodyB //bodyB
} ¥

In C++, such problems can be easily converted into hierarchies. The base class will include all the
features that are common to the subclasses. A sub-class can be constructed by inheriting the features
of base class and so on.

//Programtoshowthehierarchicalinheritance
#include<iostream.h>
#include<conio.h>
classfather //Baseclassdeclaration
{ -

intage;

charname[15];

public:

voidget()

{

cout<<‘“father nameplease”;cin>>name;

cout<<‘“father’sageplease”’;cin>>age;

void show()
cout<<“Infather’snameis‘:“<<name; cout
<< “In father’s age is: “<< age;

}
j
classson:publicfather //derivedclassl
{
charname[20];
int age ;
public;
void get () ;
voidshow();
3

void son: : get ()

{
father::get() ;
cout <<“your(son)nameplease”’<<“in”;cin>>name; cout <<
“your age please” << “In”; cin>>age;
}
void son:: show()
{
father: : show ();
cout <<“Inmynameis:“<<name;
cout << “In my age is : “ <<age;
classdaughter:publicfather //derivedclass2.
{
charname[15];
int age;
public:
voidget()
{
father : : get ();
cout<<“your(daughter’s)namepleaseln”cin>>name; cout
<< “your age please In”; cin >>age;
void show()
{
father: : show ();
cout <<*“inmyfathername is:“<< name<<‘ In
and his age is : “<<age;
}
3
main()
{

clrscr() ;

son S1,
daughterD1;
S1.get();
D1.get ();
S1.show();
D1.show ();

}
Hybridlnheritance

There could be situations where we need to apply two or more types of inheritance to design a
program. Basically Hybrid Inheritance is the combination of one or more types of the inheritance.
Here is one implementation of hybrid inheritance.

//Programtoshowthesimplehybridinheritance
#include<i sos t ream. h>
#include<conio . h>

classstudent /Ibaseclassdeclaration
{
protected:
intr_no;
public:
voidget_n(inta)
I no=a,
}

voidput_n(void)

cout<<“RollNo.:“<<r no; cout

<< ‘LIn,’;
}
b '
classtest:public student
{ //Intermediatebaseclass

protected : int parti, par 2;

public:
void get_m (int x, inty) {
parti=x;part2=y;}
voidput_m(void){
cout<<“marksobtained:“<<“In”
<< “Part]="<< part1<<“in”
<< “Part2="<< part2<<“In”;

b

}
b
classsports //baseforresult
{
protected:intscore;
public:
voidget_s(ints) {

score =s }
voidput_s(void) {
cout<<“sportswt.:“<<score<<‘“\n\n”;

¥

3
classresult :publictest,publicsports//Derived fromtest &
sports
{
inttotal,
public:
voiddisplay(void);

voidresult::display(void)

{
total=part1+part2+score; put_n()
put_m();
put S ()
cout<<“Totalscore: “<<total<<“\n”
}
main()
{
clrscr();
resultS1;
S1.get_n(347);
S1.get_m(30,35);
Sl.get s(7);
Sl.dciplay();
}
StudentActivity
1. Whatisthemajoruse ofmultilevellnheritance?

2. Howareargumentssenttothebaseconstructorsinmultipleinheritance?Whose
responsibility is it.
3. Whatisthedifference betweenhierarchicalandhybrid Inheritance.

VirtualBaseClasses

We have just discussed a situation which would require the use of both multiple and multi level
inheritance. Consider a situation, where all the three kinds of inheritance, namely multi-level,
multiple and hierarchical are involved.

Let us say the 'child' has two direct base classes ‘parent]l’ and ‘parent2’ which themselves has a
common base class ‘grandparent’. The child inherits the traits of ‘grandparent’ via two separate
paths. It can also be inherit directly as shown by the broken line. The grandparent is sometimes
referred to as ‘INDIRECT BASE CLASS’. Now, the inheritance by the child might cause some
problems.Allthepublicandprotectedmembersof*grandparent’are inherited into‘child’twice, first via
‘parent]’ and again via ‘parent2’. So, there occurs a duplicacywhich should be avoided.

Theduplicationoftheinheritedmemberscanbeavoidedbymakingcommonbaseclassasthe virtual base class:
for e.g.
classg_parent

{

//Body
b
classparentl: virtualpublicg_parent
{

//Body
b
classparent2:publicvirtualg_parent
{

//Body
b

classchild:publicparentl, publicparent2

/Ibody
I3

Whenaclassisvirtualbaseclass,C++takesnecessarycaretoseethatonlyonecopy
ofthatclassisinherited,regardlessofhowmanyinheritancepathsexistsbetween
virtualbaseclassandderivedclass.Notethatkeywordsvirtual’and ‘public’canbe used in either order.

/[Programto showthevirtualbaseclass
#include<iostream.h>#include<c
onio . h>
classstudent //Baseclassdeclaration
{
protected:
intr_no;
public:
voidget_n(inta)
{r_no=a;
}voidput_n(void)
{ cout<< “RollNo.“<<r no<<“In”;}

)2

classtest :virtualpublicstudent//Virtuallydeclaredcommon
{ //baseclassl
protected:
intpart1;
intpart2;
public:
voidget_m(intx,inty)
{partl=x;part2=y;}
voidputm(void)
{
cout<< “marksobtained: “<< “\n”;
cout<<“part1="“<<part1<<“\n”;
cout<< “part2 = “<< part2<< “\n”;

}

I
classsports:publicvirtualstudent//virtuallydeclaredcommon
{ //baseclass2

protected:

intscore;

public:
voidget_s(inta){
score =a;

}

voidput_s (void)
{cout <<“sportswt.: “<<score<<“\n”;}

)2
classresult:publictest,public sports /lderivedclass
{
private:inttotal;
public:
voidshow(void);
)2

voidresult::show(void)
{total=part1+part2+score; put_n ();

put_m();
put_s();cout<<“\ntotalscore= “<<total<<*\n”;

}

main()

{
clrser () ;
result S1 ;

S1.get_n(345)
S1.get_ m(30,35);
S1.get-S(7);
S1.show();

}

/IProgramtoshowhybridinheritanceusingvirtualbaseclasses
#include<iostream.h>
#include<conio.h>Cl
ass A

{

protected:
intx;
public:
void get (int) ;
voidshow(void);
b
voidA: :get(inta)
{x=a;}
void A: : show (void)
{cout<< X}
ClassAl:VirtualPublicA

{

protected:
inty;
public:
void get (int) ;
voidshow(void);
b
voidAl::get(inta)
{y=a;}
voidAl::show(void)
{

cout<<y;

{
classA2:VirtualpublicA

{
protected:
intz;
public:
voidget (int a)
{z=a}}
voidshow(void)
{cout <<z;}
b
classAl12:publicAl,publicA2
{
intr.t;
public:
voidget (int a)
{r=a}
voidshow(void)
{t=x+y+z+r;
cout<<‘result="<<t;
}
I3

main()

{

clrscr();

Al2r;
r.A:get(3);
r.Al:: get(4);
r.A2::get(5);
r.get (6) ;
r.show ();

Polymorphism:

Introduction

When an object is created from its class, the member variables and member functions are allocated
memory spaces. The memory spaces have unique addresses. Pointer is a mechanism to access these
memory locations using their address rather than the name assigned to them. You will study the
implications and applications of this mechanism in detail in this chapter.

Pointer is a variable which can hold the address of a memory location rather than the value at the
location. Consider the following statement

inthum=84;
This statement instructsthe compiler to reserve a2-byte of memorylocationand putsthe value 84 in

that location. Assume that the compiler allocates memory location 1001 to num. Diagrammatically,
the allocation can be shown as:

num 4—— Variablename

84 4—— Value

1001 <4—— Addressofmemorylocation

Figure9.1

As the memory addresses are themselves numbers, they can be assigned to some other variable For
example, ptr be the variable to hold the address of variable num.

Thus, we can access the value of num by the variable ptr. We can say “ptr points to num” as
shownin the figure below.

num num
84 |4 1001
1001 2057

Fig9.2

PointerstoObjects

An object ofa class behaves identically as anyother variable. Just as pointers can be defined in case
of base C++ variables so also pointers can be defined for anobject type. To create a pointer variable
for the following class

classemployee{

intcode;
charname[20];
public:
inlinevoidgetdata()=0;
inlinevoiddisplay()=0 ;
b
Thefollowingcodesiswritten

employee*abc;
Thisdeclarationcreatesapointer variableabcthatcanpointtoanyobjectofemployeetype.

thisPointer

C++ usesa unique keyword called "this" to represent anobject that invokesa member function. 'this' is
a pointer that points to the object for which this function was called. This unique pointer is called and
it passes to the member function automatically. The pointer this acts as an implicit argument to all
the member function, for e.g.

class ABC
t
Inta;
3
Theprivatevariable ‘a’canbeuseddirectlyinsideamemberfunction, like
a=123;
Wecanalsousethefollowingstatementtodothesamejob.
this—a = 123
e.g.
classstud
t
Int a,
public:
voidset(inta)
{
this—a=a;//herethispointisusedtoassignaclasslevel
} ‘a’withtheargument‘a’
void show()
{
cout<<a;
}
3
main()
{

stud S1,S2;

S1.bet(5);
S2.show();

}
o/p=5

PointerstoDerivedClasses

Polymorphism isalso accomplished using pointersinC++. It allowsa pointer ina base classto point to
either a base class object or to any derived class object. We can have the following Program segment
show how we can assign a pointer to point to the object of the derived class.

classbase

{
/[DataMembers
/IMemberFunctions

b

classderived:publicbase

{
/[DataMembers
/IMemberfunctions

I

voidmain(){
base*ptr;//pointertoclassbase
derived obj ;
ptr =&obj; /lindirectreferenceobijto the pointer
//OtherProgramstatements

}

Thepointerptr pointstoan objectof thederivedclassobj.But,apointer toaderivedclassobject may not point
to a base class object without explicit casting.

Forexample,thefollowingassignmentstatementsarenotvalid void

main()
{
baseobja;
derived*ptr;
ptr=&obja;//invalid.....explicitcastingrequired
//OtherProgramstatements
}
Aderivedclasspointercannot point tobaseclassobjects.But,it ispossiblebyusingexplicit casting. void
main()
{
base obj;
derived *ptr; / pointer ofthe derived class
ptr =(derived *)& obj; /lcorrectreference
//OtherProgramstatements
}
StudentActivity
1. DefinePointers.
2. Whatarethe variousoperatorsofpointer?Describetheirusage.

3. HowwillyoudeclareapointerinC++?

VirtualFunctions

Virtual functions, one of advanced features of OOP is one that does not really exist but it« appears
real in some parts of a program. This section deals with the polymorphic features which are
incorporated using the virtual functions.

Thegeneralsyntaxofthe virtualfunctiondeclarationis: class
use_detined_name{
private:
public:
virtualreturn_typefunction_namel(arguments);
virtual return_type function_name2(arguments);
virtualreturn_type function_name3(arguments);

I
Tomakea member functionvirtual,thekeywordvirtualisused inthe methodswhile it isdeclared in the
class definition but not in the member function definition. The keyword virtual precedes the
returntype ofthe function name. The compiler gets information fromthe keyword virtualthat it is a
virtual function and not a conventional function declaration.

For.example,thefollowingdeclararionofthevirtualfunctionisvalid. class
point {
intx;
inty;
public:
virtual int length ();
virtualvoiddisplay();
}
Remember that the keyword virtual should not be repeated in the definition if the definition occurs
outside the class declaration. The use of a function specifier virtual in the function definition is
invalid.

Forexample
classpoint{ intx

inty ;
public:
virtualvoiddisplay();

v’irtualvoidpoint: .display()//error
{
FunctionBody

}

Avirtualfunctioncannotbeastaticmembersinceavirtualmemberisalwaysamemberofa particular object in a
class rather than a member of the class as a whole.

classpoint{

int x;

inty;

public:

virtualstaticintlength();//error

intpoint::length()

{
Functionbody

A virtualfunction cannot have a constructor member function but it can have the destructor member
function.

classpoint{

int X ;

inty;

public:

virtualpoint(intxx, intyy);//constructors,error void

display () ;

intlength();

b
A destructor member function does not take any argument and no return type can be specified for it
not even void.

classpoint{

int X ;

inty;

public:

virtualpoint(int xx,int yy);//invalid void

display() ;

intlength();
It is an error to redefine a virtual method with a change of return data type in the derived class with
the same parameter types as those of a virtuall method in the base class.

classbase{

int x,y;

public:
virtualintsum(intxx, intyy);//error
Y
classderived:publicbase{
intz ;
public:
virtualfloatsum(intxx, intyy);
b
Theabovedeclarationsoftwovirtualfunctionsareinvalid.Eventhoughthesefunctionstake identical
arguments note that the return data types are different.

virtualintsum(int xx,intlT) ;//baseclass

virtualfloatsum(int xx,intIT);//derivedclass
Boththe above functions canbe writtenwith int data types in the base class as well as inthe derived class
as

virtualintsum(int xx,int yy) ;//base class

virtualintsum(int xx,int yy);//derivedclass
Only a member function of a class can be declared as virtual. A non member function
(nonmethod)of a class cannot be declared virtual.

virtualvoid display()//error,nonmemberfunction

{
¥

Functionbody

Student Activity
1. What are virtual functions
2. Whatarepurevirtualfunctions
3. Define Virtual destructors.
LateBinding

As we studied in the earlier unit, late binding means selecting functions during the execution.Though
late binding requires some overhead it provides increased power and flexibility. The late binding is
implemented through virtual functions as a result we have to declare an object of a class either as a
pointer to a class or a reference to a class.

For example the following shows how a late binding or runtime binding can be carried out with the
help of a virtual function.

classbase{

private :

int X;

floaty;

public:

virtualvoiddisplay(); int

sum () ;

b

classderivedD:publicbaseA

{ -

private:

int x ;

floaty;

public:

voiddisplay();//virtual int

sum () ;

b

voidmain()

{
baseA *ptr ;
derivedDobjd;
ptr = &objd ;
OtherProgramstatements
ptr- >di splay() ;//run time binding ptr-
>sum();//compiletimebinding

¥

Notethat the keyword virtual is be followed by the return type of a member function if a run time is
to be bound. Otherwise, the compile time binding will be effected as usual. In the above program
segment, only the display () function has been declared as virtual in the base class, whereas the sum(
) is nonvirtual. Eventhoughthe message isgiven fromthe pointerofthe base classto the objectsof the
derived class, it will not

access the sum () function of the derived class as it has been declared as nonvirtual. The sum ()
function compiles only the static binding.

The following program demonstrates the run time binding of the member functions of a class. The
same message is given to access the derived class member functions from the array of pointers. As
function are declared as virtual, the C++ compiler invokes the dynamic binding.

#include<iostream.h>
#include <conio.h>
class baseA {

public:

virtualvoiddisplay(){

cout<< “One \n”;

}

b

classderivedB:public baseA

{
public:
virtualvoiddisplay(){
cout<< “Two\n”; }

b

classderivedC:publicderivedB

{
public:
virtualvoiddisplay(){ cout<<
“Three \n”; }

b

voidmain(){
//definethreeobjects
baseA obja;
derivedB objb;
derivedC objc;
base A*ptr[3];//defineanarrayofpointersto baseA
ptr[0]=&obja;
ptr[1]=&objb;
ptr[2]=&obijc;
for(inti=0;i<=2;i++)
ptr[i]->display();//samemessageforallobjects getche() ;

}

Output

One

Two

Three

Theprogramlistedbelow illustratesthestatic bindingofthe member functionsofaclass. Inprogram there
are two classes student and academic. The class academic is derived from class student. The two
member function getdata and display are defined for both the classes. *obj is defined for class
student, the address of which is stored in the object of the class academic. The functions getdata ()
and display () of student class are invoked bythe pointer to the class.

#include<iostream.h>
#include<conio.h>cla
ss student { private:
introllno;
charname[20];

public:

voidgetdata();
voiddisplay();

j

classacademic:publicstudent{

private:

charstream;

public:

void getdata ();

voiddisplay();

j

voidstudent:: getdata()

{
cout<<“enterrollno\n”;
cin>>rollno;
cout<<“entername\n”;
cin>>name;

}

voidstudent::display()

{

cout<<“thestudent’srollnumberis‘‘<<rollno<<‘“andnameis’’<<name;

cout<< endl;

¥

voidacademic :: getdata()

{
cout<<“enterstreamofastudent?\n”; cin
>>stream;,

¥ o

void academic :: display () {
cout<<“studentsstream\n”;
cout <<stream<< endl;

¥

voidmain()

{
student*ptr ;
academicobj;
ptr=&obj;
ptr->getdata();
ptr->display();
getche();

}

output

enterrolino

25

entername

raghu

thestudent’srollnumberis25andnameisraghu

The program listed below illustrates the dynamic binding of member functions of a class. In this
program there are two classes student and academic. The class academic is derived from student.
Student function has two virtual functions getdata () and display (). The pointer for student class is
defined and object . for academic class is created. The pointer is assigned the address of the object
and function of derived class are invoked by pointer to student.

#include<iostream.h>

#include <conio.h>

class student {

private:

introllno;

charname[20];

public:

virtualvoidgetdata();

virtualvoiddisplay();

b

classacademic:publicstudent{

private :

charstream[10];

public:

voidgetdata{};

voiddisplay();

I

void student:: getdata()

{
cout<<“enterrollno\n”;
cin >> rollno;
cout<<“entername\n”; cin
>>name;

voidstudent::display()

{
cout<<“thestudent’srollnumberis’<<rollno<<‘“andnameis’’<<name;
cout<< endl;

¥

voidacademic: :getdata()

{
cout <<“enterstreamofastudent?\n”’; cin>>
stream;

¥

voidacademic::display()

{
cout<<“studentsstream\n”;
cout<< stream << endl;

¥

voidmain()

{
student*ptr ;
academicobj ;
ptr =&obj ; ptr-
>getdata(); ptr-
>dlsplay();
getch ();

}

output

enterstreamofastudent?

Btech

studentsstream

Btech

PureVirtualFunctions
Generallya function isdeclared virtualinside a base classand weredefine it the derived classes. The
function declared in the base class seldom performs any task.

The following program demonstrates how a pure virtual function is defined, declared and invoked
from the object of a derived class through the pointer of the base class. In the example there are two
classes employee and grade. The class employee is base class and the grade is derived class. The
functions getdata () and display () are declared for both the classes. For the class employee the
functions are defined with empty body or no code inside the function. The code is written for the
grade class. The methods of the derived class are invoked bythe pointer to the base class.

#include<iostream.h>
#include<conio.h>clas
s employee {

intcode

charname[20];

public:
virtualvoidgetdata();

virtualvoid display();

b
classgrade:publicemployee
{

chargrd[90];

float salary ;
public:

voidgetdata();

void display ();

3

void employee:: getdata()

{

}

voidemployee::display()

{

}

void grade : :getdata()

{
cout<<“enteremployee’sgrade®;
cin>>grd ;
cout<<“\nenterthesalary*;
cin>> salary;

}

voidgrade::display()

{

cout«" Grade salary \n";
cout«grd«""«salary«endl;

¥

voidmain()

{
employee*ptr;
grade obj ;
ptr=&obj;

ptr->getdata();
ptr->display();
getche () ;

}
Output

enteremployee’sgrade A
enter the salary 250000
Gradesalary

A 250000

ObjectSlicing:

InC++, aderivedclassobject canbeassignedto abaseclassobject, buttheother wayis not possible.
classBase{intx,vy; };
classDerived:publicBase{intz,w; };

intmain ()
{
Derivedd;
Baseb=d; //ObjectSlicing, zandwofdareslicedoff

Object Slicing happenswhenaderivedclassobjectisassignedtoabaseclassobject,additional attributes of a
derived class object are sliced off to form the base class object.

#include<iostream>us
ingnamespacestd;

classBase

{

protected:
inti;

public:
Base (inta) {i=a;}
virtualvoiddisplay ()
{cout<<"IamBaseclassobject, i="<<i<<endl; }

bi

classDerived:publicBase

{
intj;

public:
Derived (inta, intb) :Base (a) {j=b; }
virtualvoiddisplay ()
{cout<<"IamDerivedclassobject, i="

<<i<<", j="<<j<<endl; }

//Globalmethod, Baseclassobjectispassedbyvalue
voidsomefunc (Base obj)

{
obj.display();
}

intmain ()

{
Base b (33);

Derivedd (45, 54) ;
somefunc (b) ;
somefunc (d) ; //ObjectSlicing, thememberjofdisslicedoff returnO;

Output:

TamBaseclassobject,i=33
TamBaseclassobject, i=45

We can avoid above unexpected behavior with the use of pointers or references. Object slicing
doesn’t occurwhenpointersorreferencestoobjectsarepassedas functionargumentssinceapointer or
reference of anytype takes same amount of memory. For example, if we change the global method
myfunc() in the above program to following, object slicing doesn’t happen.

//restofcodeissimilartoabove
voidsomefunc (Base &obj)
{
obj.display ()
}

//restofcodeissimilartoabove
Output:

TamBaseclassobject, 1=33
IamDerivedclassobject, 1=45, j=54

Weget thesameoutput ifweusepointersand changetheprogram tofollowing.

//restofcodeissimilartoabove

voidsomefunc (Base *objp)

{
objp->display () ;

}

intmain ()

{
Base*bp=newBase (33) ;
Derived*dp=newDerived (45, 54) ;
somefunc (bp) ;
somefunc (dp) ; //NoObjectSlicing
returnO;

}

Output:

TamBaseclassobject, 1=33
TamDerivedclassobject, 1=45, j=54

Object slicing can be prevented by making the base class function pure virtualthere by disallowing
object creation. It is not possibleto createtheobjectofaclasswhichcontainsapurevirtualmethod.

C++FunctionOverriding

Ifbaseclassandderivedclasshave member functionswithsame nameandarguments.Ifyoucreate
anobject ofderived class and write codeto access that member functionthen, the member function in
derived class is only invoked, i.e., the member function ofderived class overrides the member
function of base class. This feature in C++ programming is known as function overriding.

class A

public:
void get_data()
{

{ This function is not invoked
in this example.

public:
void get_data() «
{
} This function is
}: invoked instead of

function in class
A because of
member function
{ averriding.

obj.get_data();
¥

Figure: Member Function Overriding in C++
AccessingtheOverriddenFunctioninBaseClassFromDerivedClass
Toaccesstheoverriddenfunctionofbaseclass fromderivedclass, scoperesolutionoperator ::.For

example: If you want to access get data () functionof base class fromderived class in above
example then, the following statement is used in derived class.

A::get data;//Callingget data()ofclassA.

Itisbecause, ifthe nameofclassisnotspecified,thecompilerthinksget data () functioniscalling itself.

class A

public:
void get_data()

b

{ function call
public:
» void get_data()

A::get_data();
b

function call 3

int main()

obj.get_data();
3

AbstractClass

Abstract Classisaclasswhichcontainsatleast onePureVirtualfunctioninit. Abstract classesare used to
provide anlnterface for its subclasses. Classes inheriting an Abstract Class must provide definition
to the pure virtual function, otherwise they will also become abstract class.

Characteristicsof Abstract Class

1.

e

Abstract classcannotbe instantiated,but pointersandrefrencesofAbstractclasstypecanbe
created.
Abstractclasscanhavenormalfunctionsandvariablesalongwithapurevirtualfunction.
Abstract classesare mainlyused forUpcasting,sothatitsderivedclassescanuse its

interface.

ClassesinheritinganAbstract Classmust implement allpurevirtualfunctions,orelsethey will
become Abstract too.

PureVirtualFunctions

PurevirtualFunctionsarevirtualfunctionswithno definition. Theystart withvirtualkeywordand ends
with = 0. Here is the syntax for a pure virtual function,

virtualvoidf() =0;

ExampleofAbstract Class

classBase //Abstractbaseclass

{
public:
virtualvoidshow() =0; /[PureVirtualFunction

j 2

classDerived:publicBase

{

public:

voidshow()

{cout<<"ImplementationofVirtualFunctionin Derivedclass";}

j 2

int main()

{

Base obj; //CompileTimeError
Base *b;

Derivedd;

b = &d;

b->show();

by

Output:ImplementationofVirtualFunctioninDerivedclass

IntheaboveexampleBaseclass isabstract,withpurevirtualshow() function, hencewecannot create
object of base class.

Whycan'twecreateObjectofAbstractClass?

When we create a pure virtual function in Abstract class, we reserve a slot for a function in the
VTABLE (studiedinlasttopic),but doesn't putanyaddressinthat slot.Hencethe\V TABLEwillbe incomplete.

AstheVTABLE forAbstract classisincomplete,hencethecompilerwilInotletthecreationof object for
such class and will displayan errror message whenever you tryto do so.

Exception Handling:

Exception refers to unexpected condition in a program. The unusual conditions could be faults,
causing an error which in turn causes the program to fail. The error handlingmechanism of c++ is
generally referred to as exception handling.

Generally, exceptionsare classified into synchronousand asynchronousexceptions.. The exceptions
whichoccurduringtheprogramexecution, duetosome fault inthe input dataortechniquethat is not
suitable to handle the current class of data. with in a program is known as synchronous exception.
Example:

errorssuchasoutofrange,overflow,underflowandsoon.

The exceptions caused by events or faults unrelated to the program and beyond the control of
program are asynchronous exceptions.
Forexample,errorssuchaskeyboard interrupts,hardwaremalfunctions,disk failureandsoon.

exceptionhandlingmodel:

Whena programencounters anabnormalsituation for which it innot designed, the user maytransfer
control to some other part ofthe programthat is designed to deal with the problem. This is done by
throwing an exception. The exception handling mechanism uses three blocks: try, throw and catch.

The try block must be followed immediately by a handler, which is a catch block. If an exception is
thrown in the try block the program control is transferred to the appropriate exception handler. The
program should attempt to catch any exception that is thrown by any function. The relationship of
these three exceptions handling constructs called the exception handling model is shown in figure:

try block
performoperationwhichmaythrow
or invokeexternalfunctionifneeded

invokefunctionhavingthrowblock

A 4

throwblock

if(failure)
throwaobject
exception

Y

> catchblock

catchesallexceptionsthrownfrom

A

withintryblock

throwconstruct:

The keyword throw is usedtoraise an exceptionwhen an error is generatedin the comutation. the throw
expression initialize a temporary object of the typeT used in thorw (T arg).
syntax:

throwT;

catchconstruct:

The exception handler is indicated by the catch keyword. It must be used immediately after the
statements marked by the try keyword. The catch handler can also occur immediately after another
catch Each handler will only evaluate an exception that matches.

syn:

catch(T)

{

/I errormeassges

by

tryconstruct:

The trykeyboard defines a boundarywithin which an exception can occur. A block ofcode in which
anexceptioncanoccur must be prefixed bythe keywordtry. Following thetrykeyword is a blockof code
enclosed by braces. This indicates thatthe prepared totest for the existence ofexceptions. Ifan
exception occurs, the program flow is interrupted.

try
{
if(failure)
throwT,;
}
catch(T)
{
}
example:
#include<iostream.h>v
oid main()
{
inta,b;
cout<<’entertwonumbers:”’;
cin>>a>>b;
try
{
if(b==0)
throwb;
else
cout<a/b;
}
catch(int x)
{
cout<<2"operandcan’tbe0”;
}

¥

Arrayreferenceoutofbound:
#definemax5
class array
L
private:
inta[max];
public:
int&operator[](inti)

if(i<0|[i>=max)
throwi;

else

}
I3
void main()
{
arrayx;
try
{
cout<<tryingtorefera[1]...”
X[1]=3;
cout<<"tryingtorefera[13]...”
X[13]=5;

returna[i];

catch(int 1)
{

cout<<’outofrangeinarrayreferences...”;

¥
k

multiplecatchesina program
voidtest(int x)

{
try{
if(x==1)
throwx;
else if (x==-1)
throw3.4;
else if (x==0)
throw‘s’;
}
catch(inti)
{
cout<<”caughtaninteger...”;
}
catch(floats)
{

cout<<”caughta float...”;

¥

catch(charc)

{

cout<<”caughta character...”;

i

void main()
{

test(1);
test(-1);
test(0);

}

catchall
voidtest(int x)

{
try{
if(x==1)
throwx;
else if (x==-1)
throw3.4;
else if (x==0)
throw‘s’;
}

catch(...)
{

cout<<’caughtanerror...”;

¥

ContainershipinC++

When a class contains objects of another class or its members, this kind of relationship is
calledcontainershipornestingandtheclasswhichcontainsobjectsofanotherclassasitsmembersis called as
container class.

Syntaxforthedeclaration ofanotherclassis:

Classclass_namel

{

Classclass_name2

{

Classclass_name3

{

Class_namel obj1; /lobjectofclass_namel

Class_name2 obj2; /I object of class_name2

//SampleProgramtodemonstrateContainership
#include < iostream.h >

#include < conio.h >
#include<iomanip.h>

#include< stdio.h >

const int len=80;

classemployee

t

private:

charname[len];

int number;

public:

voidget_data()

{

cout<<"\nEnteremployeename:"; cin

>> name;
cout<<"\nEnteremployeenumber:"; cin
>> number;

}

voidput_data()

{

cout <<" \n\n Employee name: "<< name;
cout<<"\n\nEmployeenumber:"<<number;

}

b
classmanager
{ -

private:

char dept[len];
int numemp;
employeeemp;
public:
voidget_data()

emp.get_data();
cout<<"\nEnterdepartment:"; cin

>> dept;

cout <<"\nEnternumberofemployees:"; cin
>> numemp;

voidput_data()

emp.put_data();
cout<<"\n\nDepartment:"<<dept;
cout<<" \n\nNumberofemployees: "<<numemp;

}

b
classscientist
{ -

private:

int pubs,year;
employeeemp;
public:

voidget_data()

{

emp.get_data();

cout <<"\nNumberofpublications:"; cin
>> pubs;

cout <<"\nYearofpublication:"; cin

>> year,

voidput_data()

{

emp.put_data();

cout <<"\n\nNumberofpublications:"<<pubs; cout
<<"\n\n Year of publication: "<< year;

}

3

void main()

{

managerm1;

scientist s1;

int ch;

clrscr();

do

{

cout<<"\nl.manager\n2.scientist\n"; cout

<<"\nEnter your choice: ";

cin>>ch;

switch(ch)

{

casel:
cout<<"\nManagerdata:\n";
ml.get_data();
cout<<"\nManagerdata:\n";
ml.put_data();
break;

case2:cout<<"\nScientistdata:\n";
sl.get data();
cout<<"\nScientistdata:\n";
s1.put_data();
break;

}

cout <<"\n\nTocontinuePress1->"; cin

>> ch;

}
while(ch==1);
getch();

}

DifferencebetweenlnheritanceandContainership:

Containership:Containership isthephenomenonofusingoneormoreclasseswithinthedefinition ofother

class.When a class contains the definition ofsome other classes, it is referred to as composition,
containment or aggregation. The data member ofa new class is an object ofsome other class.Thus the
other class is said to be composed ofother classes and hence referred to as
containership.Composition is often referred to as a “has-a” relationship because the objects of the

composite class have objects of the composed class as members.

Inheritance:Inheritance is the phenomenon ofderiving a new class froman old one.Inheritance
supportscodereusability. Additionalfeaturescanbeaddedto aclassbyderivingaclassfromit and then
byadding new features to it.Class once written or tested need not be rewritten or redefined.
Inheritance isalso referredtoasspecializationorderivation,asoneclassisinheritedorderived from the
other.It is also termed as “is-a” relationship because everyobject ofthe class being defined is also an

object of the inherited class.

Template:
Template supports generic programming, which allows developing reusable software components

such as functions, classes, etc supporting different data types in a single frame work.

A template in c++ allows the construction of a family of template functions and classes to perform
the same operation o different data types. The templates declared for functions are called class
templates. They perform appropriate operations depending on the data type ofthe parameters passed
to them.

Function Templates:

Afunctiontemplatespecifies howanindividualfunctioncanbeconstructed. template
<class T>

returntypefunctionnm(Targl, T arg2)

{
fn body;

by

Forexample:
Inputtwo numberandswaptheirvalues

template<class T>
voidswap(T&x, T &y)
{

T z;

Z=X;

X=Y;

Y=z,

}

voidmain()

{

charchl,ch2;
cout<<’entertwocharacters:”;
cin>>chl1>>ch2;
swap(chl,ch2);
cout<<chl<<ch2;
int a,b;
cout<<’entera,b:”;
cin>>a>>b;
swap(a,b);
cout<<a<<b;

float p,q;
cout<<’enterp,q:”;
cin>>p>>(;
swap(p,d);
cout<<p<<q;

}

example 2:
findmaxiumbetweentwodataitems.
template <class T>

T max(Ta,Th)

{

if (a>b)
returna;
else
returnb;

void main()

{

charchl,ch2;
cout<<’entertwocharacters:”;
cin>>ch1>>ch2;
cout<<max(chl,ch2);
int a,b;
cout<<”entera,b:”;
cin>>a>>b;
cout<<max(a,b);
float p,q;
cout<<enterp,q:”;
cin>>p>>q;
cout<<max(p,q);

Overloadingoffunction template

#include<iostream.h>t
emplate <class T>
void print(T a)

{

¥

template <class T>
voidprint(Ta,intn)

cout<<a;

inti;
for(i=0;i<n;i++)

cout<<a;
}

void main()

{

print(1);
print(3.4);
print(455,3);
print(“hello”,3);
}

Multipleargumentsfunctiontemplate:

find sum of two different numbers
template <class T,class U>
Tsum(Ta,Ub)

{
¥

voidmain()

return a+(U)b;

{
cout<<sum(4,5.5);
cout<sum(5.4,3);

¥

ClassTemplate

similar to functions, classes can also be declared to operate on different data types. Such classes are
class templates. a class template specifies how individual classes can be constructed similar tonormal
class definition. These classes model a generic class which support similar operations for different
data types.

syn:
template<classT>
class classnm

{

Tmemberl;
Tmember2;

public:
Tfun();

b
objects for classtemplateiscreatedlike:

classnm<datatype>obj;
obj.memberfun();

example:
Inputnnumbers intoanarrayandprinttheelementisascendingorder.(arraysorting)

template<classT>

class array

{

T *a;

int n;

public:

voidgetdata()

{

inti;
cout<<’enterhowmanyno:”;
cin>>n;

a=newT[n];
for(i=0;i<n;i++)

{
cout<<enteranumber:”’;
cin>>a[i];

}

}

voidputdata()

{

for(i=0;i<n;i++)
{
cout<<a[i]<<endl;
}
}
voidsort()
{
T k;
inti, j;
for(i=0;i<n-1;i++)
{
for(j=0;j<n;j++)
{

if(ali]>a[j])
{
k=a[i];
afil=a[jl;
afj]=k;

e adn

void main()
t
array<int>x;
x.getdata();
x.sort();
X.putdata();

array<float>y;
y.getdata():
y.sort();
y.putdata();

¥

Virtualdestructors:

Just like declaring member functions as virtual, destructors can be declared as virtual, whereas
constructors can not be virtual. Virtual Destructors are controlled in the same way as virtual
functions. When a derived object pointed to by the base class pointer is deleted, destructor of the
derived class as well as destructor of all its base classes are invoked. If destructor is made as non
virtual destructor in the base class, only the base class’s destructor is invoked when the object is
deleted.

#icnlude<iostream.h>

#include<string.h>clas

s father

{

protected:

char*fname;

public:

father(char*name)

{

fname=newchar(strlen(name)+1);

strcpy(fname,name);

by

virtual~father()

{

delete fname;
cout<<’~fatherisinvoked...”;

¥

virtualvoidshow()

{
cout<<’father name...”<<fname;
}
I

classson:publicfather

{

protected:

char*s_name;

public:
son(char*fname,char*sname):father(fname)
{

sname=newchar[strlen(sname)+1];
strcpy(s_name,sname);

~son()

{

delete s_name;
cout<<’~son()isinvoked”<<endl;

}

voidshow()

{

cout<<”father’sname”<<fname;
cout<<’son’sname:’<<s_name;

}

b

voidmain()

{

father*basep;

basep =new father (“mona”);
cout<<’baseppointstobaseobject...”
basep->show();

delete basep;

basep=new son(‘“‘sona”,”mona”);
cout<<’basepointstoderivedobject...”;
basep->show();

delete basep;

by

Overloadingof>>and <<operator

#definesize5

class vector

{

intv[size];

public:

vector();

friend vectoroperator*(int a,vector b);
friendvectoroperator*(vectorb,inta);
friend istream &operator>>(istream &,vector &);
friendostream&operator<<(ostreamé&,vector&);
b

vector::vector()

{

for(inti=0;i<size;i++)

V[i]=0;

}

vector::vector(int*x)

{

for(inti=0;i<size;i++)

V[i]=x[il;

}

vectoroperator*(inta,vector b)

{

vectorc;

for(inti=0;i<size;i++)

c.v[i]=a*b.v[i];

returnc;

¥

vectoroperator*(vectorb,inta)

{

vectorc;

for(inti=0;i<size;i++)
c.v[i]=a*b.v[i];
returnc;

¥

istream&operator>>(istream&din, vector &b)
{

for(inti=0;i<size;i++)

din>>b.v[i];

}
ostream&operator<<(ostream&dout,vector&b)
{

for(i=0;i<size;i++)

dout<<a[i];

returndout;

}

intx[size]={2,4,6};

int main()

{

vector m;

vectorn=x;
cout<<’enterelementsofvectorm”;
cin>>m;

cout<<m;

vectorp,q;

p=2*m;

q=n*2;

cout<<p;

cout<<gq;

¥

ManagingConsole 1/O

Introduction

Oneofthemostessentialfeaturesofinteractiveprogrammingisitsabilitytointeract
with the users through operator console usually comprising keyboard and monitor. Accordingly,
every computer language (and compiler) provides standard
input/outputfunctionsand/ormethodstofacilitateconsoleoperations.

C++ accomplishes input/output operations using concept of stream. A stream is a
series of bytes whose value depends on the variable in which it is stored. This way, C++ is able to
treat allthe input and output operations in a uniform manner. Thus, whetherit is reading froma file or
from the keyboard, for a C++ program it is simply a stream.

We haveusedtheobjectscinandcout (pre-defined inthe iostream.hfile) forthe input and
output of data of various types. This has been made possibleby overloading the operators >>and <<
to recognize allthe basic C++ types. The >>operatoris overloaded inthe istreamclass and « is
overloaded in the ostream class. The
followingisthegeneralformat forreadingdatafromthekeyboard: cin

>> variable1>> variable2>>... ... >> variableN;

Wherevariablel,variable2,arevalidC++variablenamesthathavebeendeclaredalready.
This statement will cause the computer to halt the execution and look for input data from the
keyboard. The input data for this statement would be:

dataldata2.dataN

The input data are separated bywhite spaces and should match the type ofvariable in the cin
list. Spaces, newlines and tabs will be skipped.

The operator >> reads the data character bycharacter and assigns it to the indicated location.
The reading for a variable will be terminated at the encounter of a white space or a character that
does not match the destination type.

Forexample,considerthefollowing code:

intcode;
cin>>code;

Supposethefollowingdataisgivenasinput:
1267E

The operator will read the characters up to 7 and the value 1267 is assigned to code. The
character E remains in the input stream and will be input to the next cin statement. The general
format of outputting data:

cout<<iteml<<item2<<....<<itemN;
Theitems,item1throughitemNmaybevariablesorconstantsofanybasictypes.

Theput()andget()Functions

The classes istream and ostream define two member functions get() and put() respectively to
handle the single character input/output operations. There are two types of get() functions. We can
use both get(char*) and get(void) prototypes to fetch a character including the blank space, tab and
the newline character. The get(char*) version assigns the input character to its argument and the
get(void) version returns the input character.

Since these functions are members of the input/output stream classes, we must invoke them
using an appropriate object. For instance, look at the code snippet given below:

charc;
cin.get (c);//get acharacterfromkeyboardandassignit toc while
(c'="\n)
{
cout<< C; /ldisplaythe characteronscreencin.get(c);
//getanothercharacter
}

Thiscodereadsanddisplaysalineoftext(terminatedbyanewlinecharacter).
Remember, the operator>>can also be used to read a character but it will skip the white spaces and
newline character. The above while loop will not work properly if the statement
cin>>c;
isusedinplaceof
cin.get (c);
Tryusing bothofthemandcomparetheresults. Theget(void)versionisusedas follows:
char c;
c-cin.getl); //cin.get(c) replaced
Thevaluereturnedbythefunctionget()isassignedtothevariablec.

The functionput(),amember ofostreamclass, canbeusedtooutputalineoftext,character by
character. For example,
cout<<put
(‘x’);displaysthecharacterx
and cout<<put (ch) ;
displaysthevalueofvariablech.
The variable ch must contain a character value. We can also use a number as an argument to
the function put (). For example,
cout<<put(68);
displays the character D. This statement willconvert the int value 90 to a char value and display the
character whose ASCII value is 68,
The following segment ofa programreads a line of text fromthe keyboard and displays it on
the screen.
char c;.
cin.get (c) //readacharacter
while (c!=‘\n’)

{
}

cout<<put(c);//display thecharacteron screen cin.get(c);

Thegetline()andwrite()Functions

We can read and display a line of text more efficiently using the line-oriented input/output
functions getline() and write(). The getline() function reads a whole line of text that ends with a
newline character. This function can be invoked byusing the object cin as follows:

cin.getline(line,size);

This functioncall invokes the functionwhichreads character input into the variable line. The
reading is terminated as soon as either the newline character "\n' is encountered or size number of
characters are read (whichever occurs first). The newline. character is read but not saved. Instead, itis
replaced by the null character.

Forexample;considerthefollowingcode:

char name [20] ;
cin.getline(name,20);
Assumethatwehavegiventhefollowinginputthroughthekeyboard:
Neerajgood

This input will be read correctlyand assigned to the character arrayname. Let us supposethe
input is as follows:

ObjectOriented Programming
Inthiscase, theinputwillbeterminatedafterreadingthefollowingl19 characters:

ObjectOriented Pro

Afterreadingthestring/cinautomaticallyaddstheterminatingnullcharactertothecharacter
array.

Remember,thetwoblankspacescontainedinthestringarealsotakenintoaccount,i.e.
betweenObjectsandOriented and Pro.

Wecanalsoread stringsusingtheoperator>>as follows:

cin >>name;

But remember cin can read strings thatdo not contain white space. Thismeans thatcin can read

just one word and not a series of words such as “Neeraj good”.

FormattedConsolel/OQOperations

C++supportsanumberoffeaturesthatcouldbeusedforformattingtheoutput. These
features include:
e iosclassfunctionsandflags.
e Manipulators.
e User-definedoutputfunctions.
The ios class contains a large number of member functions that could be used to format
theoutput in a number of ways. The most important ones among themare listed below.

Tablel10.1

Function Task
width() Tospecifytherequiredfieldsizefordisplayinganoutput value

Precision() | Tospecifythenumberofdigitsto bedisplayedafterthedecimalpoint of a

float value
fill() To specifya characterthatisusedto filltheunused portionofa field.
self() Tospecifyformat flagsthat cancontrolthe formofoutput display (such as

Left-justification and right-justification).

Unself() | Toclearthe flagsspecified.

Manipulators are special functions that can be included in these statements to alter the format
parametersofa stream. The table given below showssome important!manipulatorfunctionsthat are
frequentlyused. To access these manipulators, the file iomanip.hshould be included inthe program.

Table10.2
Manipulator Equivalentlosfunction
setw() width()
Setprecision() Precision()
Setfill() fill()
setiosflags() self()
Resetiosflags() Unself()

InadditiontothesefunctionssupportedbytheC++library,wecancreateourown manipulator
functions to provide any special output formats.

StudentActivity
1. Whatisastream?
2. Defineput()and get()functions
3. What isthedifferencebetweengetline()andget()functions?
4. Define write () functions.
5. Whatare manipulators?
Streams

C++ is designed to work with a wide variety of devices including terminals, disks, and tape
drives. Although each device is very different, the system supplies an interface to the programmer
that is independent of the actualdevice being accessed, This interface is known as stream.

A stream is a sequence of bytes. It acts either as a source from which the input data can be
obtained or as a destination to which the output data can be sent. The source stream that
providesdatato the program is called the output stream. In other words, a program extracts the bytes
from an input stream and inserts bytes into an output stream.

The data in the input stream can come from the keyboard or any other storage device.
Similarly, the data in the output stream can go to the screen or any other storage device. As
mentioned earlier, a stream acts as an interface between the program and the input/output device.
Therefore, a C++ program handles data (input or output) independent of the devices used.

C++containsseveralpre-defined streamsthatareautomaticallyopened whena
program begins its execution. They include cin and cout which have been used very often in our
earlier programs. We know that cin represents the input stream connected to the standard inputdevice
(usually the keyboard) and cout represents the output streamconnected to the standard output device
(usually the screen). Note that the keyboard and the screen are default options. We canredirect
streams to other devices or files, if necessary.

I/OOperations

Input and Output statements of computer languages are used to provide commu-nications
betweentheuserandtheprogram.Inmostofthecomputerlanguages, inputandoutputaredone

through statements. But in C++, these operations are carried out through its built-in functions. The
I/0 functions are designed in header files like fstream.h, iostream.h etc.

Through these functions, data can be read from or written to files or standard input/output
devices like keyboard and VDU. This execution of a program can be interrupted by input/output
calls. Hence the data can be entered or output can be retrieved during execution.

The file, stream classes support a number of member functions for performing the input and
output operations on files. One pair of functions, pot() and get(), are designed for handling a single
character at a time. Another pair of functions,

write()and readQ,aredesigned to writeand read blocksofbinarydata.

put()andget()Functions

The function put() writes a single character to the associated stream. Similarly, the function
get () reads a single character from the, associated stream. The program, requests for a string. On
receiving the string, the programwrites it, character, bycharacter, to the file using the pot() function
in a for loop. Notethat the length of the string is used to terminate the for loop.

C++providesanumberofusefulpredefinedstreamclassesforconsoleinput/output operations. Some
of the C++ the predefined stream objects are listed below.
cin This is the name ofstandard input stream, usually keyboard. The
corresponding name in C is stdin.
cout Thisisthenameofstandardoutputstream,usuallyscreenofthemonitor.The
corresponding name in C is stdout.
cerr This is the name of standard error output stream, usually screen of the monitor.
Thecorresponding name in C is stderr.
clog This is another version ofcerr. It provides buffer to collect errors. C does not have a
stream equivalent to this.
Intheir default roles, thesestreams aretiedupwiththekeyboardandscreenofthe monitor as describe
above. However, you can redirect them from and to other devices and files.

Keywords

put():Amemberofostreamclass,couldbeusedtooutputalineoftext,characterby character.

Get():Amember ofistreamclass,usedtoinputasinglecharacter ataline.

Getline(): Thegetline()functionreadsawholelineof-textthatendswithanewline character. This
function could be invoked by using the object cin.

Manipulators:Special functionsthatcanbeincludedin consolel/Ostatementstoalterthe format-
parameters of a stream

Streams:C++ is designed to work with a wide variety of devices including, disks and take drives.
Although each device is very different the system suppliers an interface to the
programmer that is independent ofthe actualdevice accessed. This interface is known as
stream.

Outputstream: Thesourcestreamthatprovidesdatatotheprogramiscalled the.output stream.

Namespaces:

Scopes

Namedentities,suchasvariables, functions,andcompoundtypes needto bedeclaredbeforebeing used in
C++. The point in the programwhere this declaration happens influences its visibility:

Anentitydeclaredoutsideanyblock has globalscope,meaningthat itsname isvalidanywhere in the
code. While an entitydeclared within a block, such as a function or a selective statement, has
blockscope,and isonlyvisiblewithinthespecific block inwhichit isdeclared,but notoutside it.

Variableswithblockscope areknownaslocalvariables.

For example, avariabledeclared inthebodyofa functionisa localvariablethat extendsuntilthe
endofthethefunction(i.e., untilthebrace j thatclosesthefunctiondefinition), butnotoutsideit:

int foo; //globalvariable

int some function ()
{

intbar; //localvariable
bar=0;
}

intother function ()

{
foo=1; //ok:fooisaglobal variable
bar=2; //wrong:barisnotvisiblefromthisfunction

}

Ineachscope, anamecanonlyrepresentoneentity. Forexample, therecannotbetwo variableswith the
same name in the same scope:

intsome function ()
{
intx;
x=0;
doublex; //wrong:namealreadyusedinthisscope
x=0.0;

Thevisibilityofanentitywith blockscope extends untiltheend oftheblock, including inner blocks.
Nevertheless,aninnerblock,because it isadifferent block,canre-utilizeanameexisting inanouter scope
to refer to a different entity; in this case, the name willrefer to a different entityonlywithin the inner
block, hiding the entity it names outside. While outside it, it will stillrefer to the original entity. For
example:

//innerblockscopes
#include <iostream>

138 P.T.O

usingnamespacestd;

intmain () {

intx=10;

inty=20;

{
intx; //ok,innerscope.
x=50; //setsvaluetoinnerxy=50; //set
svalueto (outer)y cout <<"inner
block:\n";
cout<<"x:"<<x<<'\n';
cout<<"y:"<<y<<'\n';

}

cout <<"outer block:\n";
cout<<"x:"<<x<<'\n';
cout<<"y:"<<y<<'\n'; return
0;

output:

innerblock:

x:50

y:50

outerblock:

x:10

y:50

Notethatyisnothiddenintheinnerblock,and thusaccessingystillaccessestheoutervariable.

Variablesdeclared indeclarationsthat introduceablock, suchas functionparametersand variables
declared inloopsandconditions(suchasthosedeclaredonaforor anif) are localtotheblockthey
introduce.

Namespaces

Onlyoneentitycanexist withaparticularname inaparticularscope. This isseldomaproblemfor local
names, since blocks tend to be relatively short, and names have particular purposes within them,
such as naming a counter variable, an argument, etc...

Butnon-localnamesbringmorepossibilitiesfornamecollision,especiallyconsideringthatlibraries
maydeclare many functions, types, and variables, neither ofthemlocal in nature, and some ofthem
Very generic.

Namespacesallowustogroupnamedentitiesthatotherwisewouldhave globalscope intonarrower scopes,
giving them namespace scope. This allows organizing the elements of programs into different
logical scopes referred to by names.

Thesyntaxtodeclareanamespacesis:

namespaceidentifier

{

named entities

}

Whereidentifierisanyvalid identifierand named entitiesisthesetofvariables,typesand functions
that are included within the namespace. For example:

59 P.T.O

namespacemyNamespace

{
inta,b;

}

Inthiscase, thevariables aand narenormalvariablesdeclaredwithinanamespace called
myNamespace

Thesevariablescanbeaccessedfromwithintheir namespacenormally,withtheir identifier(either a or b),
but if accessed from outside the myNamespacenamespace they have to be properly qualified
withthescopeoperator : : .Forexample,to accessthepreviousvariables fromoutside myNamespace they
should be qualified like:

1 myNamespace: :a
2 myNamespace: :b

Namespacesareparticularlyusefultoavoidnamecollisions.For example:

// namespaces
#include <iostream>
usingnamespacestd;

namespacefoo

{
intvalue () {return5;}

}

namespacebar

{
constdoublepi=3.1416;
doublevalue () {return2*pi;}

}

Iintmain () {
cout<<foo::value ()<<'\n';
cout<<bar::value ()<<'\n';
cout << bar::pi <<'\n';
return 0;

output:

5
6.2832
3.1416

In this case, there are two functions with the same name: va1ue. One is defined within the
namespace foo, and the other one in bar. No redefinition errors happen thanks to namespaces.
Noticealso howpiisaccessed inanunqualified manner fromwithinnamespace bar(just aspi), while
it is again accessed in main, but here it needs to be qualified as bar: :pi.

Namespacescanbesplit: Twosegmentsofacodecan bedeclaredinthesamenamespace:

1 namespacefoo{inta;}

140 P.T.O

2 namespacebar{intb; }
3 namespacefoo{intc; }

This declares three variables: aand care in namespace foo, while bis in namespace bar.
Namespacescanevenextendacrossdifferent translationunits(i.e.,acrossdifferent filesofsource code).

using

Thekeyword usingintroducesaname intothecurrent declarativeregion(suchasablock),thus avoiding the
need to qualify the name. For example:

// using
#include <iostream>
usingnamespacestd;

namespacefirst
{
intx=5;
inty=10;
}

namespacesecond
{
doublex= 3.1416;
doubley= 2.7183;
}

int main () {
using first::x;
usingsecond: :y;
cout<<x<<'\n';
cout<<y<<'\n';
cout << first::y <<'\n';
cout<<second: :x<<'\n';
return 0;

}

Output:
5
2.7183
10
3.1416

Noticehowinmain,thevariablex(withoutanynamequalifier) refersto first: : x,whereasyrefers to
second: :y, just as specified by the usingdeclarations. The variables first::yand second: :x can
still be accessed, but require fully qualified names.

Thekeywordusingcanalsobeused asadirectivetointroduceanentirenamespace:

// using
#include <iostream>
usingnamespacestd;

namespacefirst

{
intx=5;
inty=10;

141 P.T.O

}

namespacesecond
{
doublex= 3.1416;
doubley= 2.7183;
}

intmain () {
usingnamespacefirst;
cout << x <<'\n'; cout
<< y <<'\n';
cout<<second: :x<<'\n';
cout<<second: :y<<'\n';
return 0;

output:

5

10
3.1416
2.7183

Inthiscase, bydeclaringthat wewereusing namespace first, alldirect usesofxandywithout name

qualifiers were also looked up in namespace first.

usingand using namespacehave validityonlyin the same block inwhichtheyare statedor inthe
entiresourcecodefile iftheyareuseddirectlyintheglobalscope.Forexample, it wouldbepossible to first
use the objects of one namespace and then those of another one bysplitting the code in different

blocks:

//usingnamespaceexample
#include <iostream>
usingnamespacestd;

namespacefirst
{
intx=5;

}

namespacesecond
{
doublex= 3.1416;

}

Iintmain () {

{

usingnamespacefirst;
cout << x <<'\n';

}

{

usingnamespacesecond;
cout << x <<'\n';

}
returnO;

}

output:
5
3.1416

142

P.T.O

Namespacealiasing

Existingnamespacescanbealiasedwithnewnames,withthefollowing syntax:

namespacenew_name=current_name ’

Thestdnamespace

Alltheentities(variables,types,constants,and functions)ofthestandardC++ libraryaredeclared within the
stdnamespace. Most examples in these tutorials, in fact, include the following line:

usingnamespacestd;

Thisintroducesdirect visibilityofallthe namesofthe stanamespace intothecode.This isdone in these
tutorials to facilitate comprehension and shortenthe length of the examples, but many programmers
prefer to qualify each of the elements of the standard libraryused in their programs. For example,
instead of:

cout<<"Helloworld!";

Itiscommontoinsteadsee:

std: :cout<<"Helloworld!";

Whether the elements in the stanamespace are introduced with usingdeclarations or are fully
qualified oneveryusedoesnot changethebehaviororefficiencyoftheresultingprograminany way. It is
mostly a matter ofstyle preference, although for projects mixing libraries, explicit qualification
tends to be preferred.

Storageclasses

The storage for variables with global or namespace scope is allocated for the entire durationofthe
program. Thisisknownasstaticstorage,and it contrastswiththestoragefor localvariables(those declared
within a block). These use what is known as automatic storage. The storage for local variables is
onlyavailable during the block inwhichtheyare declared;after that,that same storage may be used for
a local variable of some other function, or used otherwise.

Butthereisanothersubstantialdifferencebetweenvariableswithstaticstorageandvariableswith
automaticstorage:

- Variableswithstaticstorage(suchasglobalvariables)thatarenotexplicitlyinitializedare
automatically initialized to zeroes.

- Variableswithautomaticstorage(suchaslocalvariables)that arenotexplicitlyinitializedare left
uninitialized, and thus have an undetermined value.

Forexample:

//staticvsautomaticstorage #include
<iostream>

143 P.T.O

usingnamespacestd;
intx;

Iintmain ()

{
inty;
cout<<x<<'\n';
cout<<y<<'\n';
return 0;

}

Output:

0

4285838

Theactualoutputmayvary, butonlythevalueof xisguaranteedtobezero. ycanactuallycontain just about
any value (including zero).

144 P.T.O

New&DeleteOperators

Dynamic memoryallocation means creating memoryat runtime. For example, when we declare an
array, we must provide size of array in our sourcecode to allocate memoryat compile time.

But if we need to allocate memory at runtime me must use new operator followed by data type. If
we need to allocate memory for more than one element, we must provide totalnumber of elements
required in square bracket[]. It will returnthe address of first byte of memory.

Syntaxofnewoperator

ptr=newdata-type;

//alloctememoryforoneelement

ptr=newdata-type[size];

//alloctememoryforfixednumberofelement

Delete operator is used to deallocate the memory created by new operator at run-time. Once the
memory is no longer needed it should by freed so that the memory becomes available again for

other request of dynamic memory.

Syntaxofdelete operator

deleteptr;

//dealloctememoryforoneelement

delete[]ptr;

//dealloctememoryforarray

Exampleofc++newand deleteoperator

#include<iostream.h>

#include<conio.h>

145 P.T.O

void main()

{

intsize,i;

int *ptr;

cout<<"\n\tEntersizeofArray:";

cin>>size;

ptr=newint[size];
/ICreatingmemoryatrun-timeandreturnfirstbyteofaddresstoptr.
for(i=0;i<5;i++) /Nnputarrrayfromuser.
{
cout<<™\nEnteranynumber:";
cin>>ptrli];
}
for(i=0;i<5;i++) /[Outputarrraytoconsole.
cout<<ptr[i]<<",";

delete[] ptr;

/ldeallocatingallthememorycreatedbynew operator

EntersizeofArray:5
Enteranynumber:78
Enteranynumber:45
Enteranynumber:12
Enteranynumber:89

Enter anynumber: 56

78, 45, 12, 89,56,

	Module-1: LECTURE-1
	Machine level Language:
	Assembly level Language :
	High level Language :
	Procedure Oriented Programming Language
	Characteristics of procedure oriented programming:
	Object Oriented Programing
	ObjectA ObjectB
	OBJECTS
	CLASS:
	DATA ABSTRACTION:
	DATA ENCAPSALATION:
	INHERITENCE:
	POLYMORPHISIM:
	DYNAMIC BINDING:
	MESSAGE PASSING :
	APPLICATION OF OOP:
	//myfirst programin C++
	#include<iostream>
	usingnamespace std;
	intmain()
	cout<<"Hello World!";
	return 0;

	STRUCTURE OF C ++ PROGRAM
	voidperson::getdata(void)
	cout<<”entername”; cin>>name; cout<<”enter age”; cin>>age;
	voiddisplay()
	cout<<”\nname:”<<name; cout<<”\n age:”<<age;
	intmain()
	person p; p.getdata();

	KEYWORDS:

	C++KEYWORDS:
	IDENTIFIERS:
	BASIC DATA TYPES IN C++
	Voidfunction(void);
	Void*gp;
	void*ptr1; void*ptr2;

	USER DEFINED DATA TYPES:
	STRUCTERS AND CLASSES
	ENUMERATED DATA TYPE:
	enumshape{circle,square,triangle} enumcolour{red,blue,green,yellow} enum position {off,on}
	Shapeellipse;//ellipseisoftype shape
	colour background =blue; //vaid colourbackground=7;//errorinc++ colour background =(colour) 7;//ok
	intc=red;//valid, colourtypepromotedtoint
	enumcolor{red,blue=4,green=8}; enum color {red=5,blue,green};
	enum{off,on};
	intswitch-1=off; intswitch-2=on;
	constintsize=10; charname (size) ;

	DECLARATION OF VARIABLES:
	main()
	floatx,average; floatsum=0;
	cin>>x; sum=sum+x
	float average; average=sum/x; cout<<average;

	REFERENCE VARIABLES:
	Synatx:Datatype&reference–name=variablename;
	floattotal=1500; float&sum=total;

	SCOPE RESOLUTION OPERATOR:
	Syntax: ::variable–name;
	#include<iostrcam.h> int m=10; main()
	intm=20;
	intk=m; intm=30;
	cout<<”\nweareinouterblock\n”; cout<<"m="<<m<<endl; cout<<":: m="<<:: m<<endl;

	MemoryManagementOperator
	Example:
	int*p=newint; float*p=newfloat;
	int*p=ne\vint(25);
	pointer-variable=newdatatypes[size];
	Syntax:deletepointer-variable;
	deletep; deleteq;
	MANIPULATERS:
	Theifstatement:
	Theswitchstatement
	Thedo-whilestatement:

	INLINE FUNCTION:
	DEFAULT ARGUMENT:-
	#include<iostream.h> #include<stdio.h> mainQ
	float si; si=(p*n*r)/100; return(si);
	voidprintline (charch,intlen)
	for(inti=l;i<=len;i++) cout<<ch<<endl;
	output:-

	CONST ARGUMENT:-
	PROGRAM

	Module-2:
	CREATING OBJECTS:
	ACCESSINGCLASS MEMBER:
	INSIDETHECLASSDEF1NATION:
	AC++ PROGRAMWITHCLASS:

	Private member functions:
	ARRAY WITH CLASSES:
	ARRAYOFOBJECTS:-
	REPLACEANDSORTUSINGCLASS:-
	ARRAY OFMEMBERS:
	LECTURE-17
	STATICMEMBERFUNCTIONS:-
	OBJECTSASFUNCTION ARGUMENTS
	LECTURE-18
	SWAPPINGPRIVATEDATAOF CLASSES:
	PROGRAMFORILLUSTRATINGTHEUSEOFFRIEND FUNCTION:
	LECTURE-19
	POINTERTOMEMBERS;
	DEREFERENCINGOPERATOR:
	LECTURE-20
	PARAMETERIZEDCONSTRUCTOR:-
	CLASSWITHCONSTRUCTOR:-
	OVERLOADEDCONSTRUCTOR:-
	COPY CONSTRUCTOR:
	DYNAMICCONSTRUCTOR:-
	IMPLEMENTEDOFDESTRUCTORS:-
	DEFININGOPERATOROVERLOADING:

	Unary–operatoroverloading(usingmemberfunction):
	operator--()
	--m;

	Unary–-operatoroverloading(usingfriendfunction):
	operator--(abc&p)
	--p.m;
	Unaryoperator+foraddingtwocomplexnumbers(usingmemberfunction)
	Unaryoperator+foraddingtwocomplexnumbers(usingfriendfunction)
	TypeConversions
	BasictoClassType
	Example

	ClasstoBasicType
	OneClassto AnotherClassType
	Example
	Table7.3

	Inheritance:
	DefiningDerivedClasses
	SingleInheritance
	MakingaPrivateMemberInheritable
	MultilevelInheritance
	MultipleInheritances
	HierarchicalInheritance
	HybridInheritance
	VirtualBaseClasses
	Introduction
	Figure9.1

	PointerstoObjects
	thisPointer
	PointerstoDerivedClasses
	StudentActivity

	VirtualFunctions
	LateBinding
	PureVirtualFunctions
	AbstractClass
	CharacteristicsofAbstract Class
	PureVirtualFunctions
	ExampleofAbstract Class
	Whycan'twecreateObjectofAbstractClass?
	throwconstruct:
	catchconstruct:
	tryconstruct:
	Arrayreferenceoutofbound:
	Function Templates:
	example 2:
	Overloadingof>>and <<operator

	Theput()andget()Functions
	char c;
	cout<<put (‘x’);displaysthecharacterxand cout<<put (ch) ;
	cout<<put(68);
	char c;.
	cout<<put(c);//display thecharacteron screen cin.get(c);
	Thegetline()andwrite()Functions
	cin.getline(line,size);
	Neerajgood
	ObjectOriented Programming
	ObjectOriented Pro
	cin >>name;

	FormattedConsoleI/OOperations
	Table10.1
	Table10.2

	Streams
	I/OOperations
	put()andget()Functions
	Keywords
	Namespaces:
	Scopes
	Namespaces
	using
	Namespacealiasing
	Thestdnamespace
	Storageclasses
	New&DeleteOperators

